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Here (Bx), = >, Brete.
> n is the number of species in a given foodweb,
> xp = zi(¢) is the abundance (=population) of species k at time ¢,
» 1 = (rg) where r is the intrinsic growth rate of species k,

B = (By¢) where Byy is the interaction between species £ and species k

e if Bre > 0 the interaction is mutualistic
e if B¢ < 0 the interaction is competitive
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Remarks
1. if @|¢=0 > 0 then for all t > 0, =(t) > 0.

2. if B =0 (no interactions), we recover the logistic equation

dxy (t)
dt

=zp(rr — Tk) -
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Questions

*

> Existence of an equilibrium x* = (z}) such that

zp(ry —z} + (Bx)g) =0 Vk € [n].

» Stability of this equilibrium: if &|;—o > 0 do we have
z(t) —— x*7
t— o0
> Feasibility of this equilibrium: 7 >0 for all k € [n]

> Species extinction z; =0 for some k € [n] ? In the latter case, we have

surviving species if z} >0,
vanishing species if z; =0.



Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.



Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.



Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

> it is a very rough approach but we need a model otherwise ..

No maths = no understanding | P. Rossberg, in Food webs and biodiversity (Wiley)




Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

> it is a very rough approach but we need a model otherwise ..

No maths = no understanding | P. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

> The i.i.d model: poor adequation to reality but a good benchmark to explore the
mathematical tractability



Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

> it is a very rough approach but we need a model otherwise ..

No maths = no understanding | P. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

> The i.i.d model: poor adequation to reality but a good benchmark to explore the
mathematical tractability

» The elliptic model: encodes the natural correlation between By, and By but
limited because of a unique single trend

EBj, = p™  Vk, £ € [n].



Assumption 1: A random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

> it is a very rough approach but we need a model otherwise ..

No maths = no understanding | P. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

> The i.i.d model: poor adequation to reality but a good benchmark to explore the
mathematical tractability

» The elliptic model: encodes the natural correlation between By, and By but
limited because of a unique single trend

EBj, = p™  Vk, £ € [n].

» Sparse models: encodes the fact that a species only interacts with d < n other
species.



Assumption 2: n — o0

This assuption is relevant
> to model large foodwebs with many species
> to take advantage of self-averaging properties of large random matrices
> and leverage on random matrix theory

We need to normalize accordingly the interaction matrix so that (for instance)
IB|l = [|Bnll = O(1)

as n — oQ.
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Theorem (Takeuchi & Adachi 1980)

Consider the LV system
iy = zp(re — zp + (Bz)k), k€ [n]. 1)
If there exists a diagonal positive matrix W such that
W(—I+B)+ (=T +BT)W < 0 (negative definite)

then if @|t=0 > 0, system (1) has a unique non negative stable equilibrium:

Remark on uniqueness

> if &|t=¢ > 0 then x* is the unique solution of the Linear Complementarity
Problem (LCP):

x>0
re — 2k + (Bx) <0 Vk € [n]
xk(rk — T + (Bzc)k) =0

> if x1|t=0 = 0, just consider the subsystem where x1's interactions are erased in
matrix B.
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Equilibrium and global stability: i.i.d. model

Corollary | (RMT - i.i.d. case)

App iid.
Assume that By, = C’:‘\’}% where EAg, =0, + E|Age]* < 00.
2 _
EA7, =1

> If @ > /2 then a.s. eventually system (1) has a non negative globally stable
equilibrium point.

Proof
. _ i _ AT
» We look for W diagonal such thatw( 1+aﬁ)+( I+ AW <o,
> Simply take W = I then
A AT 2 (A+ AT
B SR o, —2I+£( + )
ay/n ayn @ V24/n
—_———

Wigner matrix

Well-known that Amax <A+AT) —25 4 9 _ we conclude easily.
V2yn ) n—oo

> The choice W = I might not be optimal.
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Equilibrium and global stability: elliptic model |

Let A = (A4;;) a n X n matrix. Assume that

> The (Ay) are i.i.d N(0,1), the (A, Aj;) are iid. A (o, (; i’))

> The (Aj;;) and (Aj;j, Aj;) are independent.

Imaginary axis

1o <5 oo o5 1o S5 oo s T 6 1

(@ (b)
Real axis
Figure: Centered elliptical model (y» = 0) for various correlations p. Notice that p = O represents
the model with i.i.d. entries.
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Consider the model

A
B:—+711T IEBM_f

ay/n H -

]

Outlier for elliptic random matrices (k= —0.5)

Imaginary axis
°
s

-2 -1 o 1 2 3
Real axis

Figure: Elliptic model with o = 2. The outlier is very close to p.
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Equilibrium and global stability: elliptic model Il
Corollary Il (RMT - elliptic case)

Consider the following set of admissible parameters:

A= {<p,a,u> € (~1,1) x (0,00) X E,

1 1/ 2(1
o<>\/2(1+p), ,U«<5+§ 1—%}

> If (p, e, ) € A then a.s. eventually system (1) has a non negative globally stable
equilibrium point.

200 10

Yo o7 oz ok ok ok o 100
Corelation o)

Figure: Representation of the set of admissible parameters A by a heat map. The z-axis
corresponds to p, the y-axis to o and the intensity of the color p.
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Open question

Statistical properties of the equilibrium
Consider the i.i.d. model and o > /2. The equilibrium a* is the solution of the LCP
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Open question

Statistical properties of the equilibrium
Consider the i.i.d. model and o > /2. The equilibrium a* is the solution of the LCP
problem
T >0
ry — ok + (Bx)p <0 Vk € [n]
o (ry — xp + (Bx)g) =0
Notice that * is random.
> For fixed «, is it possible to asymptotically estimate the number of
vanishing/surviving species?
> + other statistical properties of equilibrium x*?

> Yes, using statistical physics techniques, but no mathematical proof so far.

Reference

» Ecological communities with Lotka-Volterra dynamics, G. Bunin, Phys. Rev. E
(2017)
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A puzzling result by Mazza et al.
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Feasible equilibrium: a simple linear equation

> Recall the LV system
T = a:k(rk — T + (Ba:)k) .
> We investigate the case where there exists a positive equilibrium

>0 & x>0 Vke[n].

> In theoretical ecology it is called a feasible equilibrium and is of interest because
all species survive.

> Such an equilibrium should satisfy

n-sit a0 o [ForrEe] e >0

» If matrix I — B is invertible, then

x* = (- B)r.
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No feasible equilibrium under standard normalization

Consider the simplified (r = 1) equation of feasible equilibrium m

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Mazza et al. establish that if

and Agy ~ N(0,1) i.i.d., there is no feasible equilibrium with proba 1

IP‘{ inf xz>0}—>0
k€[n]

N — o0

References

> "The feasibility of equilibria in large ecosystems: A primary but neglected concept
in the complexity-stability debate”,
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018

> " A chaos hypothesis for some large systems of random equations”. Geman and
Hwang, 1982.
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Corollary

> If a > 4 fixed, the probability to obtain a positive solution goes to zero:
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Elements of proof

Theorem (Geman, Hwang)

> Let M fixed, a« >4 and z* =1 + —2_g*

ay/n
> then
ZBl 7
D M

— Nu|1ym,———
o M ( My 5 1)

"

Ty

Corollary

> If a > 4 fixed, the probability to obtain a positive solution goes to zero:

P<{ inf x*>0} < ]P’{ inf x*>0} ~ P{z; >0 R
{ke[n] k keim] P kel_[][w] {zk > 0} M—c0

Conclusion

. . A
» Feasible solutions for | * = 1 + ———a™* | are eventually extremely rare.

aV'N




Feasibility

A logarithmic correction implies feasibility
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Feasibility of the solution

Consider the system

n—o00

* A *
=14 ——x where o =a, — 0.
n

ay/n

Denote by | a; = v/2log(n) |.

Theorem (phase transition, Bizeul-N. '21)

> If‘ an < (1-46)/2log(n) ‘for n > 1 then

> If‘ an > (14 6)+/2log(n) ‘for n>1

i

inf x>
ke[n]

'}
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Feasibility of the solution

Consider the system
* A *
=1+ ——=x where o =a, — 0.
av/n

n— oo
Denote by | @) = y/2log(n) |.

Theorem (phase transition, Bizeul-N. '21)

> If’ang(1—5)x/210g(n)‘forn>>1then P{kin[f]x;;>0}—>0 .
€n

n—oo

> If’ an > (14 6)+/2log(n) ‘for n > 1 then IP’{

inf xz>0}—>l

k€[n] n—o0

References

> Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021



Phase transition (gaussian case)

Homogeneous case, Gaussian entries

1.0+ — n = 1000
—-- n =400
——- threshold

> We plot the frequency of positive solutions over 10000 trials for the system

1 A
=14 — " z*
/log(n) Vit

as a function of the parameter k.
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Phase transition (gaussian case)

Homogeneous case, Gaussian entries

104 — n = 1000 H
—-- n =400
——- threshold

> We plot the frequency of positive solutions over 10000 trials for the system

1 A
=14 — " z*
/log(n) Vit

as a function of the parameter k.

513*

> A phase transition occurs at the critical value k = v/2.



Feasibility

Elements of proof
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Important facts

Gaussian extreme values

> Let (Zg)kgn) i-i-d. N(0,1) random variables, Denote by

M, = kIni[n] Z, then ‘ EMy, ~ —y/2log(n) ‘
€en

Existence of the resolvent

> Recall that
i a.s. 1 and i a.s. 9
p \/ﬁ n— oo \/ﬁ n— oo ’
As a consequence, if a > 1 then (I — a—%) is eventually invertible and

o = <Ifai\>ﬁ)711

is well-defined.
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A heuristics for the critical scaling
1. Unfold the resolvent.

S e

vn @ N
——
=Zp =
Z Ry, Z

2. Notice that | Z, ~ N(0,1) | and the Z;'s are i.i.d.

1+ 422~ 1+ 4
(6% « (6%
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A heuristics for the critical scaling
1. Unfold the resolvent.

1 [Al]k 1 A \2
= 1 — P _
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=Zp
Z Ry, Z
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« « «
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3. Conclude
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A heuristics for the critical scaling

1.

Unfold the resolvent.

1 [Al]k 1 A \2
= 1 — P _
+ a /n * a? [(ﬁ) (
——
=7
Z. R Z

= 1+ 42 & 1+ 4
« « «

Notice that | Z, ~ N(0,1) | and the Z;'s are i.i.d.

Conclude
min Z,
min mz ~ 1+ HHkEn] 2k 4+ .- ~
k€[n] o4

2log(n)

1—

<1-96

v/2log(n)
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A heuristics for the critical scaling
1. Unfold the resolvent.

k
1 [Al 1 _
_ 1_"_7[ ]k+7[(i)2(7,‘;)11}
a /n a? |\vm avm N
N——
=7y, =Ry
Z R Z
= 1+ & 1424
« (6% o
2. Notice that | Z, ~ N(0,1) | and the Z;'s are i.i.d.
3. Conclude
min Z, 21
min ot~ 14 ek o v2ls(m)
k€[n] o4 «
21
s> o0 g Ve g
(0%
21
< o0 g Ve
(0%
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A heuristics for the critical scaling
1. Unfold the resolvent.

R (O GES
——
=2y =Ry,
Zi |, Ry Z,

= 1+ 42 & 1+ 4
« « «

2. Notice that | Z, ~ N(0,1) | and the Z;'s are i.i.d.

3. Conclude

min 4 21
min ot~ 14 ek o v2ls(m)
k€[n] o4 «

21

> o0 g Y2 g
«
21

< o g M2l s
«

Crux of proof: to handle the remaining term Ry
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Elements of proof

Recall that the feasible solution * = (z

xp =1+

Z R
Ze 4 Be
(03 «

where

*

k

) writes

Ry,

(

A

N

) (-

A

v

)]

k
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Elements of proof
Recall that the feasible solution * = (x}) writes

Zy | Ry

—+ = where Ry =
@ @

() (-

xp =1+

A

v

)],

1. [Truncation] Introduce R}, = truncated version of Ry,
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Elements of proof

*

Recall that the feasible solution * = (x}) writes

Zy , Ry

mElt Tt

where

Ry =

(&) (-2

1. [Truncation] Introduce Rj, = truncated version of Ry,

N

mMaxyge|[n] 13%

P

aa*

n—oo

. [Extreme values of dependent variables] Sufficient to prove that

3. [Gaussian Concentration] if A Ry(A) is K-Lipschitz, then

EeMik <e

K22
p)

for GAUSSIAN entries (or entries € LST)
4. [Sub-Gaussiannity of Ry,] if

then E max Ry, < K+/2log(n)
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Elements of proof
Recall that the feasible solution * = (x}) writes

Zy | Ry

x’,é:l—l—;—l-g where Ry =

(&) (-2

1. [Truncation] Introduce R}, = truncated version of Ry,

N

. [Extreme values of dependent variables] Sufficient to prove that

maxpe(n Be  p

aa* n—o0o

3. [Gaussian Concentration] if A Ry(A) is K-Lipschitz, then

- 2,2
K2
EeMik <e 2

for GAUSSIAN entries (or entries € LST)
4. [Sub-Gaussiannity of Ry,] if

~ 2,2 ~
EeMik < P then Em]gx Ry, < K+/2log(n)

= | The main effort is to prove that A — Rk (A) is K-Lipschitz.




A truncated version of the remainder term

> Let »: Rt — [0, 1] a smooth cut-off function

Y
1
A%
!
2+n 3
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A truncated version of the remainder term

> Let »: Rt — [0, 1] a smooth cut-off function

Y
1
¥
|

2+n 3

a.s.
— 2,

» Recall that HAH
vVl n—oo
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A truncated version of the remainder term

> Let »: Rt — [0, 1] a smooth cut-off function

- A
A a.s. . _
» Recall that HTHH m 2, consider | Ry = ¢ (H

» Notice that

P ~
(e oy )

< P(3ko, Ry, # Riy) =P (||A/V] > 2+ 1) —— 0.
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A truncated version of the remainder term

> Let »: Rt — [0, 1] a smooth cut-off function

- A
A a.s. . _
» Recall that HTHH m 2, consider | Ry = ¢ (H

» Notice that

P ~
(e oy )

< P(3ko, Ry # Rio) =P ([ A/vn]| 2 2+n) ——0.
> No asymptotic loss when replacing Ry by Ek
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Proof of sub-gaussianity of Rj: concentration

> We first prove that A — Ry (A) is K-lipschitz:

|Ri(A) — Ru(B)| < K\/m
ij
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to the truncation, we need to differentiate the spectral norm).
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Proof of sub-gaussianity of Rj: concentration

> We first prove that A — Ry (A) is K-lipschitz:

|R(A) — Ri(B)| < K\/m
ij

and then rely on Tsirelson-lbragimov-Sudakov's inequality which immediatly
yields sub-gaussianity.

> In order to prove the Lipschitz property, we first get a bound for the gradient

IVRL(A)] < K

for matrices A with simple maximal singular value {/Amax (A;?*) = H%H (due

to the truncation, we need to differentiate the spectral norm).

> We then proceed by density to complete the proof of the Lipschitz property.
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Model
> Let D = (d;;) the (deterministic) n X n adjacency matrix of a d-regular graph,
(d < n),
> Let A= (A;;) an X n matrix with i.i.d. N'(0,1) entries.
> Consider the model

1 1
B=——-DocA=——

Vi a\/a(d”A”)

and assume one of the following:
l.dxn
2. d >log(n) and D has a block matrix structure (to be detailed).

Theorem (Akjouj, N.)

Assume either condition 1 or 2, then the same phase transition as before occurs

around | ), ~ y/2log(n) |
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Sparse interactions
Strong motivation in theoretical and empirical ecology to study sparse interactions.

Model
> Let D = (d;;) the (deterministic) n X n adjacency matrix of a d-regular graph,
(d < n),
> Let A= (A;;) an X n matrix with i.i.d. N'(0,1) entries.
> Consider the model

1 1
B=——-DocA=——

Vi a\/E(diinj)

and assume one of the following:
l.dxn
2. d >log(n) and D has a block matrix structure (to be detailed).

Theorem (Akjouj, N.)

Assume either condition 1 or 2, then the same phase transition as before occurs
around | ), ~ y/2log(n) |
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More on the block matrix structure assumption

The block matrix structure
»n=dxm

> Consider a m X m permutation matrix Py € S,
1 - 1

>|etJ:1d1§: . land | D=P,® J
1 - 1

> D is the adjacency matrix of a d-regular graph with a block matrix structure.

29



More on the block matrix structure assumption

The block matrix structure
»n=dxm
» Consider a m X m permutation matrix P, € Sy,
1 - 1
>IetJ:1dIZ;: and
1 - 1

> D is the adjacency matrix of a d-regular graph with a block matrix structure.

Example where m = 4

AM) 0 0
0 0 0
Ped=1g A g
0 0 Al

oo o+
o~ oo
— o oo
c oo
co oYy
owoo
Lo oo
co o
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More on the block matrix structure assumption

The block matrix structure

»n=dxm
» Consider a m X m permutation matrix P, € Sy,
1 - 1

>let J=1417 = | : |and | D=P,0J
1 -1

> D is the adjacency matrix of a d-regular graph with a block matrix structure.

Example where m = 4

1 0 0 0 J 0 0 0 A 0

00 0 1 0 0 0 J 0 0 0
Pe=1o 1 0 o' P=|o 7 0o of ' PA=| ¢ a®» o

00 1 0 0 0 J 0 0 0 A@

Open question

> Possible to relax this block structure assumption? Simulations suggest yes.
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Extensions

The elliptical model
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Feasibility for the elliptical model

Theorem (Clenet, EI Ferchichi, N.)
Consider the model

A K
B(a) = v + ;11T ,

and assume that u < 1. Then the same phase transition as before occurs.
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Non-Homogeneous case
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Non-homogeneous case

Let r is IV X 1 deterministic. We are interested in the equation

where

Pmin(n) = ming rg
Pmax(n) = maxy g

or(n) = \/ % >k Tz
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Non-homogeneous case |

Let r is NV X 1 deterministic. We are interested in the equation

Pmin(n) = ming rg

x| where Tmax(N) = maxy g,

A
VN oo(n) = /T Sy 12

Theorem

Assume that there exist x, K > 0 such that‘ k< Ppin(n) < Pmax(n) < K ‘ then

% p—y T

b 2N < (1 — ) =22 then IP’{ inf zk>0} — 0
kE[N] N
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Non-homogeneous case |

Let r is NV X 1 deterministic. We are interested in the equation

Pmin(n) = ming rg

x| where Tmax(N) = maxy g,
av N

or(n) = \/ % >k Tz

Theorem

Assume that there exist x, K > 0 such that‘ k< Ppin(n) < Pmax(n) < K ‘ then

bif 2N < (1—6) =22 then |P{ inf 2, >0p — 0
N Tmax (1) kE[N] N—o0

> if 28 > (146)-720 then | P4 inf @ > 03 — 1
N Tmin (72) kE[N] N

— 00
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Non-homogeneous case |l

Non-Homogeneous case, Gaussian entries

104 — n = 1000
—-- n =400 !
——- thresholds /7 :
| 1
0.8 1
1
2 1
£ 1
2 i
2 0.6 !
s i
z |
£ 1
5 044 1
F |
(] 1
@ 1
w 1
0.2 :
i
1
i
0.0 !
T

0.5 ty 15 2 2.5 tz

> In the non-homogeneous case, there is a transition buffer

ay or(n)  or(n)

a}‘v rmax(n) ’ rmin(n)

and not a sharp transition at SN 1.
N

3.5
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Thank you for your attention!
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