Properties of large Lotka Volterra systems with random interactions

Jamal Najim

CNRS \& Université Gustave Eiffel
joint work with
I. Akjouj, P. Bizeul, M. Clénet, H. El Ferchichi, F. Massol

IHP - June 2022

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,
- $x_{k}=x_{k}(t)$ is the abundance (= population) of species k at time t,

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,
- $x_{k}=x_{k}(t)$ is the abundance (= population) of species k at time t,
- $\boldsymbol{r}=\left(r_{k}\right)$ where r_{k} is the intrinsic growth rate of species k,

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,
- $x_{k}=x_{k}(t)$ is the abundance (= population) of species k at time t,
- $\boldsymbol{r}=\left(r_{k}\right)$ where r_{k} is the intrinsic growth rate of species k,
- $B=\left(B_{k \ell}\right)$ where $B_{k \ell}$ is the interaction between species ℓ and species k
- if $B_{k \ell}>0$ the interaction is mutualistic
- if $B_{k \ell}<0$ the interaction is competitive

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,
- $x_{k}=x_{k}(t)$ is the abundance (= population) of species k at time t,
- $\boldsymbol{r}=\left(r_{k}\right)$ where r_{k} is the intrinsic growth rate of species k,
- $B=\left(B_{k \ell}\right)$ where $B_{k \ell}$ is the interaction between species ℓ and species k
- if $B_{k \ell}>0$ the interaction is mutualistic
- if $B_{k \ell}<0$ the interaction is competitive

Remarks

1. if $\left.\boldsymbol{x}\right|_{t=0}>0$ then for all $t>0, \boldsymbol{x}(t)>0$.

Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given by a system of Lotka-Volterra equations:

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n], \quad \boldsymbol{x}=\left(x_{k}\right) .
$$

Here $(B \boldsymbol{x})_{k}=\sum_{\ell} B_{k \ell} x_{\ell}$.

- n is the number of species in a given foodweb,
- $x_{k}=x_{k}(t)$ is the abundance (=population) of species k at time t,
- $\boldsymbol{r}=\left(r_{k}\right)$ where r_{k} is the intrinsic growth rate of species k,
- $B=\left(B_{k \ell}\right)$ where $B_{k \ell}$ is the interaction between species ℓ and species k
- if $B_{k \ell}>0$ the interaction is mutualistic
- if $B_{k \ell}<0$ the interaction is competitive

Remarks

1. if $\left.\boldsymbol{x}\right|_{t=0}>0$ then for all $t>0, \boldsymbol{x}(t)>0$.
2. if $B=0$ (no interactions), we recover the logistic equation

$$
\frac{d x_{k}(t)}{d t}=x_{k}\left(r_{k}-x_{k}\right)
$$

Questions

- Existence of an equilibrium $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ such that

$$
x_{k}^{*}\left(r_{k}-x_{k}^{*}+(B \boldsymbol{x})_{k}\right)=0 \quad \forall k \in[n] .
$$

Questions

- Existence of an equilibrium $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ such that

$$
x_{k}^{*}\left(r_{k}-x_{k}^{*}+(B \boldsymbol{x})_{k}\right)=0 \quad \forall k \in[n] .
$$

- Stability of this equilibrium: if $\left.\boldsymbol{x}\right|_{t=0}>0$ do we have

$$
\boldsymbol{x}(t) \underset{t \rightarrow \infty}{\longrightarrow} \boldsymbol{x}^{*} ?
$$

Questions

- Existence of an equilibrium $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ such that

$$
x_{k}^{*}\left(r_{k}-x_{k}^{*}+(B \boldsymbol{x})_{k}\right)=0 \quad \forall k \in[n] .
$$

- Stability of this equilibrium: if $\left.\boldsymbol{x}\right|_{t=0}>0$ do we have

$$
\boldsymbol{x}(t) \underset{t \rightarrow \infty}{\longrightarrow} \boldsymbol{x}^{*} ?
$$

- Feasibility of this equilibrium: $x_{k}^{*}>0$ for all $k \in[n]$

Questions

- Existence of an equilibrium $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ such that

$$
x_{k}^{*}\left(r_{k}-x_{k}^{*}+(B \boldsymbol{x})_{k}\right)=0 \quad \forall k \in[n] .
$$

- Stability of this equilibrium: if $\left.\boldsymbol{x}\right|_{t=0}>0$ do we have

$$
\boldsymbol{x}(t) \underset{t \rightarrow \infty}{\longrightarrow} \boldsymbol{x}^{*} ?
$$

- Feasibility of this equilibrium: $x_{k}^{*}>0$ for all $k \in[n]$
- Species extinction $x_{k}^{*}=0 \quad$ for some $k \in[n]$? In the latter case, we have

$$
\begin{cases}\text { surviving species if } & x_{k}^{*}>0 \\ \text { vanishing species if } & x_{k}^{*}=0\end{cases}
$$

Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.

Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.
- An alternative is to consider random matrices, the statistical properties of which encode some real properties of the foodwed.

Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.
- An alternative is to consider random matrices, the statistical properties of which encode some real properties of the foodwed.
- it is a very rough approach but we need a model otherwise ..

[^0]
Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.
- An alternative is to consider random matrices, the statistical properties of which encode some real properties of the foodwed.
- it is a very rough approach but we need a model otherwise ..

No maths $=$ no understanding $\quad P$. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

- The i.i.d model: poor adequation to reality but a good benchmark to explore the mathematical tractability

Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.
- An alternative is to consider random matrices, the statistical properties of which encode some real properties of the foodwed.
- it is a very rough approach but we need a model otherwise ..

```
No maths = no understanding P. Rossberg, in Food webs and biodiversity (Wiley)
```


Some random models

- The i.i.d model: poor adequation to reality but a good benchmark to explore the mathematical tractability
- The elliptic model: encodes the natural correlation between $B_{k \ell}$ and $B_{\ell k}$ but limited because of a unique single trend

$$
\mathbb{E} B_{k \ell}=\mu^{(n)} \quad \forall k, \ell \in[n] .
$$

Assumption 1: A random model for the interaction matrix B

- The study of large Lotka-Volterra systems makes it very difficult to calibrate the model and estimate matrix B.
- An alternative is to consider random matrices, the statistical properties of which encode some real properties of the foodwed.
- it is a very rough approach but we need a model otherwise ..

```
No maths = no understanding P. Rossberg, in Food webs and biodiversity (Wiley)
```


Some random models

- The i.i.d model: poor adequation to reality but a good benchmark to explore the mathematical tractability
- The elliptic model: encodes the natural correlation between $B_{k \ell}$ and $B_{\ell k}$ but limited because of a unique single trend

$$
\mathbb{E} B_{k \ell}=\mu^{(n)} \quad \forall k, \ell \in[n] .
$$

- Sparse models: encodes the fact that a species only interacts with $d \ll n$ other species.

Assumption 2: $n \rightarrow \infty$

This assuption is relevant

- to model large foodwebs with many species
- to take advantage of self-averaging properties of large random matrices
- and leverage on random matrix theory

We need to normalize accordingly the interaction matrix so that (for instance)

$$
\|B\|=\left\|B_{n}\right\|=\mathcal{O}(1)
$$

as $n \rightarrow \infty$.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions

Equilibrium and global stability

Theorem (Takeuchi \& Adachi 1980)
Consider the LV system

$$
\begin{equation*}
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n] . \tag{1}
\end{equation*}
$$

If there exists a diagonal positive matrix W such that

$$
W(-I+B)+\left(-I+B^{T}\right) W<0 \quad \text { (negative definite) }
$$

then if $\left.\boldsymbol{x}\right|_{t=0}>0$, system (1) has a unique non negative stable equilibrium:

$$
\boldsymbol{x}(t) \underset{t \rightarrow \infty}{ } \boldsymbol{x}^{*}
$$

Equilibrium and global stability

Theorem (Takeuchi \& Adachi 1980)
Consider the LV system

$$
\begin{equation*}
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n] . \tag{1}
\end{equation*}
$$

If there exists a diagonal positive matrix W such that

$$
W(-I+B)+\left(-I+B^{T}\right) W<0 \quad \text { (negative definite) }
$$

then if $\left.\boldsymbol{x}\right|_{t=0}>0$, system (1) has a unique non negative stable equilibrium:

$$
\boldsymbol{x}(t) \xrightarrow[t \rightarrow \infty]{ } \boldsymbol{x}^{*}
$$

Remark on uniqueness

- if $\left.\boldsymbol{x}\right|_{t=0}>0$ then \boldsymbol{x}^{*} is the unique solution of the Linear Complementarity Problem (LCP):

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Equilibrium and global stability

Theorem (Takeuchi \& Adachi 1980)

Consider the LV system

$$
\begin{equation*}
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right), \quad k \in[n] . \tag{1}
\end{equation*}
$$

If there exists a diagonal positive matrix W such that

$$
W(-I+B)+\left(-I+B^{T}\right) W<0 \quad \text { (negative definite) }
$$

then if $\left.\boldsymbol{x}\right|_{t=0}>0$, system (1) has a unique non negative stable equilibrium:

$$
\boldsymbol{x}(t) \xrightarrow[t \rightarrow \infty]{\longrightarrow} \boldsymbol{x}^{*}
$$

Remark on uniqueness

- if $\left.\boldsymbol{x}\right|_{t=0}>0$ then \boldsymbol{x}^{*} is the unique solution of the Linear Complementarity Problem (LCP):

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

- if $\left.x_{1}\right|_{t=0}=0$, just consider the subsystem where x_{1} 's interactions are erased in matrix B.

Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)
Assume that $B_{k \ell}=\frac{A_{k \ell}}{\alpha \sqrt{n}}$ where $\left\{\begin{array}{l}A_{k \ell} \text { i.i.d. }, \\ \mathbb{E} A_{k \ell}=0, \\ \mathbb{E} A_{k \ell}^{2}=1\end{array}+\mathbb{E}\left|A_{k \ell}\right|^{4}<\infty\right.$.

Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)
Assume that $B_{k \ell}=\frac{A_{k \ell}}{\alpha \sqrt{n}}$ where $\left\{\begin{array}{l}A_{k \ell} \text { i.i.d. }, \\ \mathbb{E} A_{k \ell}=0, \\ \mathbb{E} A_{k \ell}^{2}=1\end{array}+\mathbb{E}\left|A_{k \ell}\right|^{4}<\infty\right.$.

- If $\alpha>\sqrt{2}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)
Assume that $B_{k \ell}=\frac{A_{k \ell}}{\alpha \sqrt{n}}$ where $\left\{\begin{array}{l}A_{k \ell} \text { i.i.d. }, \\ \mathbb{E} A_{k \ell}=0, \\ \mathbb{E} A_{k \ell}^{2}=1\end{array}+\mathbb{E}\left|A_{k \ell}\right|^{4}<\infty\right.$.

- If $\alpha>\sqrt{2}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Proof

- We look for W diagonal such that $W\left(-I+\frac{A}{\alpha \sqrt{n}}\right)+\left(-I+\frac{A^{T}}{\alpha \sqrt{n}}\right) W<0$.

Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)
Assume that $B_{k \ell}=\frac{A_{k \ell}}{\alpha \sqrt{n}}$ where $\left\{\begin{array}{l}A_{k \ell} \text { i.i.d. }, \\ \mathbb{E} A_{k \ell}=0, \\ \mathbb{E} A_{k \ell}^{2}=1\end{array}+\mathbb{E}\left|A_{k \ell}\right|^{4}<\infty\right.$.

- If $\alpha>\sqrt{2}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Proof

- We look for W diagonal such that $W\left(-I+\frac{A}{\alpha \sqrt{n}}\right)+\left(-I+\frac{A^{T}}{\alpha \sqrt{n}}\right) W<0$.
- Simply take $W=I$ then

$$
-I+\frac{A}{\alpha \sqrt{n}}-I+\frac{A^{T}}{\alpha \sqrt{n}}=-2 I+\frac{\sqrt{2}}{\alpha} \underbrace{\left(\frac{A+A^{T}}{\sqrt{2} \sqrt{n}}\right)}_{\text {Wigner matrix }}
$$

Well-known that $\lambda_{\max }\left(\frac{A+A^{T}}{\sqrt{2} \sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2$ - we conclude easily.

Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)
Assume that $B_{k \ell}=\frac{A_{k \ell}}{\alpha \sqrt{n}}$ where $\left\{\begin{array}{l}A_{k \ell} \text { i.i.d. }, \\ \mathbb{E} A_{k \ell}=0, \\ \mathbb{E} A_{k \ell}^{2}=1\end{array}+\mathbb{E}\left|A_{k \ell}\right|^{4}<\infty\right.$.

- If $\alpha>\sqrt{2}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Proof

- We look for W diagonal such that $W\left(-I+\frac{A}{\alpha \sqrt{n}}\right)+\left(-I+\frac{A^{T}}{\alpha \sqrt{n}}\right) W<0$.
- Simply take $W=I$ then

$$
-I+\frac{A}{\alpha \sqrt{n}}-I+\frac{A^{T}}{\alpha \sqrt{n}}=-2 I+\frac{\sqrt{2}}{\alpha} \underbrace{\left(\frac{A+A^{T}}{\sqrt{2} \sqrt{n}}\right)}_{\text {Wigner matrix }}
$$

Well-known that $\lambda_{\max }\left(\frac{A+A^{T}}{\sqrt{2} \sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2$ - we conclude easily.

- The choice $W=I$ might not be optimal.

Equilibrium and global stability: elliptic model I

Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix. Assume that

- The $\left(A_{i i}\right)$ are i.i.d $\mathcal{N}(0,1)$, the $\left(A_{i j}, A_{j i}\right)$ are i.i.d. $\mathcal{N}_{2}\left(0,\binom{1, \rho}{\rho, 1}\right)$
- The $\left(A_{i i}\right)$ and $\left(A_{i j}, A_{j i}\right)$ are independent.

Equilibrium and global stability: elliptic model I

Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix. Assume that

- The $\left(A_{i i}\right)$ are i.i.d $\mathcal{N}(0,1)$, the $\left(A_{i j}, A_{j i}\right)$ are i.i.d. $\mathcal{N}_{2}\left(0,\binom{1, \rho}{\rho, 1}\right)$
- The $\left(A_{i i}\right)$ and $\left(A_{i j}, A_{j i}\right)$ are independent.

Figure: Centered elliptical model $(\mu=0)$ for various correlations ρ. Notice that $\rho=0$ represents the model with i.i.d. entries.

Equilibrium and global stability: elliptic model II
Consider the model

$$
B=\frac{A}{\alpha \sqrt{n}}+\frac{\mu}{n} \mathbf{1 1}^{T}, \quad \mathbb{E} B_{k \ell}=\frac{\mu}{n}, \quad\left\|\frac{\mu}{n} \mathbf{1 1}^{T}\right\|=\mu
$$

Equilibrium and global stability: elliptic model II

Consider the model

$$
B=\frac{A}{\alpha \sqrt{n}}+\frac{\mu}{n} \mathbf{1 1}^{T}, \quad \mathbb{E} B_{k \ell}=\frac{\mu}{n}, \quad\left\|\frac{\mu}{n} \mathbf{1 1}^{T}\right\|=\mu
$$

Figure: Elliptic model with $\mu=2$. The outlier is very close to μ.

Equilibrium and global stability: elliptic model III
Corollary II (RMT - elliptic case)
Consider the following set of admissible parameters:

$$
\begin{aligned}
\mathcal{A}=\{(\rho, \alpha, \mu) \in(-1,1) \times(0, \infty) \times \mathbb{R} & , \\
& \left.\alpha>\sqrt{2(1+\rho)}, \quad \mu<\frac{1}{2}+\frac{1}{2} \sqrt{1-\frac{2(1+\rho)}{\alpha^{2}}}\right\}
\end{aligned}
$$

Equilibrium and global stability: elliptic model III

Corollary II (RMT - elliptic case)
Consider the following set of admissible parameters:

$$
\begin{aligned}
\mathcal{A}=\{(\rho, \alpha, \mu) \in(-1,1) \times(0, \infty) \times \mathbb{R}, & \\
& \left.\alpha>\sqrt{2(1+\rho)}, \quad \mu<\frac{1}{2}+\frac{1}{2} \sqrt{1-\frac{2(1+\rho)}{\alpha^{2}}}\right\}
\end{aligned}
$$

- If $(\rho, \alpha, \mu) \in \mathcal{A}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Equilibrium and global stability: elliptic model III

Corollary II (RMT - elliptic case)

Consider the following set of admissible parameters:

$$
\begin{aligned}
\mathcal{A}=\{(\rho, \alpha, \mu) \in(-1,1) \times(0, \infty) \times \mathbb{R} & , \\
& \left.\alpha>\sqrt{2(1+\rho)}, \quad \mu<\frac{1}{2}+\frac{1}{2} \sqrt{1-\frac{2(1+\rho)}{\alpha^{2}}}\right\}
\end{aligned}
$$

- If $(\rho, \alpha, \mu) \in \mathcal{A}$ then a.s. eventually system (1) has a non negative globally stable equilibrium point.

Figure: Representation of the set of admissible parameters \mathcal{A} by a heat map. The x-axis corresponds to ρ, the y-axis to σ and the intensity of the color μ.

Open question

Statistical properties of the equilibrium

Consider the i.i.d. model and $\alpha>\sqrt{2}$. The equilibrium \boldsymbol{x}^{*} is the solution of the LCP problem

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Open question

Statistical properties of the equilibrium

Consider the i.i.d. model and $\alpha>\sqrt{2}$. The equilibrium \boldsymbol{x}^{*} is the solution of the LCP problem

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Notice that \boldsymbol{x}^{*} is random.

Open question

Statistical properties of the equilibrium

Consider the i.i.d. model and $\alpha>\sqrt{2}$. The equilibrium x^{*} is the solution of the LCP problem

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Notice that \boldsymbol{x}^{*} is random.

- For fixed α, is it possible to asymptotically estimate the number of vanishing/surviving species?

Open question

Statistical properties of the equilibrium

Consider the i.i.d. model and $\alpha>\sqrt{2}$. The equilibrium x^{*} is the solution of the LCP problem

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Notice that \boldsymbol{x}^{*} is random.

- For fixed α, is it possible to asymptotically estimate the number of vanishing/surviving species?
-+ other statistical properties of equilibrium \boldsymbol{x}^{*} ?

Open question

Statistical properties of the equilibrium

Consider the i.i.d. model and $\alpha>\sqrt{2}$. The equilibrium x^{*} is the solution of the LCP problem

$$
\left\{\begin{array}{l}
x_{k} \geq 0 \\
r_{k}-x_{k}+(B \boldsymbol{x})_{k} \leq 0 \\
x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right)=0
\end{array} \quad \forall k \in[n]\right.
$$

Notice that \boldsymbol{x}^{*} is random.

- For fixed α, is it possible to asymptotically estimate the number of vanishing/surviving species?
- + other statistical properties of equilibrium \boldsymbol{x}^{*} ?
- Yes, using statistical physics techniques, but no mathematical proof so far.

Reference

- Ecological communities with Lotka-Volterra dynamics, G. Bunin, Phys. Rev. E (2017)

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility
A puzzling result by Mazza et al.
A logarithmic correction implies feasibility Elements of proof

[^1]Feasible equilibrium: a simple linear equation

- Recall the LV system

$$
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right) .
$$

Feasible equilibrium: a simple linear equation

- Recall the LV system

$$
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right) .
$$

- We investigate the case where there exists a positive equilibrium

$$
\boldsymbol{x}^{*}>0 \quad \Leftrightarrow \quad x_{k}^{*}>0 \quad \forall k \in[n] .
$$

Feasible equilibrium: a simple linear equation

- Recall the LV system

$$
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right) .
$$

- We investigate the case where there exists a positive equilibrium

$$
\boldsymbol{x}^{*}>0 \quad \Leftrightarrow \quad x_{k}^{*}>0 \quad \forall k \in[n] .
$$

- In theoretical ecology it is called a feasible equilibrium and is of interest because all species survive.

Feasible equilibrium: a simple linear equation

- Recall the LV system

$$
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right) .
$$

- We investigate the case where there exists a positive equilibrium

$$
\boldsymbol{x}^{*}>0 \quad \Leftrightarrow \quad x_{k}^{*}>0 \quad \forall k \in[n] .
$$

- In theoretical ecology it is called a feasible equilibrium and is of interest because all species survive.
- Such an equilibrium should satisfy

$$
r_{k}-x_{k}^{*}+\left(B \boldsymbol{x}^{*}\right)_{k}=0 \quad \Leftrightarrow \quad \boldsymbol{x}^{*}=\boldsymbol{r}+B \boldsymbol{x}^{*}, \quad \boldsymbol{x}^{*}>0
$$

Feasible equilibrium: a simple linear equation

- Recall the LV system

$$
\dot{x}_{k}=x_{k}\left(r_{k}-x_{k}+(B \boldsymbol{x})_{k}\right) .
$$

- We investigate the case where there exists a positive equilibrium

$$
\boldsymbol{x}^{*}>0 \quad \Leftrightarrow \quad x_{k}^{*}>0 \quad \forall k \in[n] .
$$

- In theoretical ecology it is called a feasible equilibrium and is of interest because all species survive.
- Such an equilibrium should satisfy

$$
r_{k}-x_{k}^{*}+\left(B \boldsymbol{x}^{*}\right)_{k}=0 \quad \Leftrightarrow \quad \boldsymbol{x}^{*}=\boldsymbol{r}+B \boldsymbol{x}^{*}, \quad \boldsymbol{x}^{*}>0
$$

- If matrix $I-B$ is invertible, then

$$
\boldsymbol{x}^{*}=(I-B)^{-1} \boldsymbol{r} .
$$

No feasible equilibrium under standard normalization

Consider the simplified ($\boldsymbol{r}=\mathbf{1}$) equation of feasible equilibrium $\boldsymbol{x}^{*}=\mathbf{1}+B \boldsymbol{x}^{*}$

No feasible equilibrium under standard normalization

Consider the simplified ($\boldsymbol{r}=\mathbf{1}$) equation of feasible equilibrium $\boldsymbol{x}^{*}=\mathbf{1}+B \boldsymbol{x}^{*}$
An puzzling result from Mazza et al.
Building upon Geman and Hwang, Mazza et al. establish that if

$$
B=\frac{A}{\alpha \sqrt{n}}, \quad \alpha>4
$$

and $A_{k \ell} \sim \mathcal{N}(0,1)$ i.i.d., there is no feasible equilibrium with proba 1

$$
\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{N \rightarrow \infty}{ } 0
$$

No feasible equilibrium under standard normalization

Consider the simplified ($\boldsymbol{r}=\mathbf{1}$) equation of feasible equilibrium $\boldsymbol{x}^{*}=\mathbf{1}+B \boldsymbol{x}^{*}$

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Mazza et al. establish that if

$$
B=\frac{A}{\alpha \sqrt{n}}, \quad \alpha>4
$$

and $A_{k \ell} \sim \mathcal{N}(0,1)$ i.i.d., there is no feasible equilibrium with proba 1

$$
\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{N \rightarrow \infty}{ } 0
$$

References

- "The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate",
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018
- "A chaos hypothesis for some large systems of random equations". Geman and Hwang, 1982.

Elements of proof

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\alpha \sqrt{n}} \boldsymbol{x}^{*}$

Elements of proof

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\alpha \sqrt{n}} \boldsymbol{x}^{*}$
- then

$$
\left(\begin{array}{c}
x_{1}^{*} \\
\vdots \\
x_{M}^{*}
\end{array}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \quad \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{I_{M}}{\alpha^{2}-1}\right)
$$

Elements of proof

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\alpha \sqrt{n}} \boldsymbol{x}^{*}$
- then

$$
\left(\begin{array}{c}
x_{1}^{*} \\
\vdots \\
x_{M}^{*}
\end{array}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \quad \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{I_{M}}{\alpha^{2}-1}\right)
$$

Corollary

- If $\boldsymbol{\alpha}>4$ fixed, the probability to obtain a positive solution goes to zero:

$$
\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \leq \mathbb{P}\left\{\inf _{k \in[M]} x_{k}^{*}>0\right\} \sim \prod_{k \in[M]} \mathbb{P}\left\{x_{k}^{*}>0\right\} \xrightarrow[M \rightarrow \infty]{ } 0
$$

Elements of proof

Theorem (Geman, Hwang)

- Let M fixed, $\boldsymbol{\alpha}>4$ and $\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\alpha \sqrt{n}} \boldsymbol{x}^{*}$
- then

$$
\left(\begin{array}{c}
x_{1}^{*} \\
\vdots \\
x_{M}^{*}
\end{array}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \quad \mathcal{N}_{M}\left(\mathbf{1}_{M}, \frac{I_{M}}{\alpha^{2}-1}\right)
$$

Corollary

- If $\boldsymbol{\alpha}>4$ fixed, the probability to obtain a positive solution goes to zero:

$$
\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \leq \mathbb{P}\left\{\inf _{k \in[M]} x_{k}^{*}>0\right\} \sim \prod_{k \in[M]} \mathbb{P}\left\{x_{k}^{*}>0\right\} \xrightarrow[M \rightarrow \infty]{ } 0
$$

Conclusion

- Feasible solutions for $\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}^{*}$ are eventually extremely rare.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility
A puzzling result by Mazza et al
A logarithmic correction implies feasibility
Elements of proof

Extensions

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{n}} \boldsymbol{x}^{*} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{n} \xrightarrow[n \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{n}^{*}=\sqrt{2 \log (n)}$.

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{n}} \boldsymbol{x}^{*} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{n} \xrightarrow[n \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{n}^{*}=\sqrt{2 \log (n)}$.
Theorem (phase transition, Bizeul-N. '21)

- If $\boldsymbol{\alpha}_{n} \leq(1-\delta) \sqrt{2 \log (n)}$ for $n \gg 1$

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{n}} \boldsymbol{x}^{*} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{n} \xrightarrow[n \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{n}^{*}=\sqrt{2 \log (n)}$.
Theorem (phase transition, Bizeul-N. '21)

- If $\underset{\boldsymbol{\alpha}_{n} \leq(1-\delta) \sqrt{2 \log (n)}}{ }$ for $n \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0$

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{n}} \boldsymbol{x}^{*} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{n} \xrightarrow[n \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{n}^{*}=\sqrt{2 \log (n)}$.
Theorem (phase transition, Bizeul-N. '21)

- If $\underset{\boldsymbol{\alpha}_{n} \leq(1-\delta) \sqrt{2 \log (n)}}{ }$ for $n \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0$
- If $\boldsymbol{\alpha}_{n} \geq(1+\delta) \sqrt{2 \log (n)}$ for $n \gg 1$

Feasibility of the solution

Consider the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{n}} \boldsymbol{x}^{*} \quad \text { where } \quad \boldsymbol{\alpha}=\boldsymbol{\alpha}_{n} \xrightarrow[n \rightarrow \infty]{ } \infty
$$

Denote by $\boldsymbol{\alpha}_{n}^{*}=\sqrt{2 \log (n)}$.
Theorem (phase transition, Bizeul-N. '21)

- If $\boldsymbol{\alpha}_{n} \leq(1-\delta) \sqrt{2 \log (n)}$ for $n \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0$
- If $\underset{\boldsymbol{\alpha}_{n} \geq(1+\delta) \sqrt{2 \log (n)}}{ }$ for $n \gg 1$ then $\mathbb{P}\left\{\inf _{k \in[n]} x_{k}^{*}>0\right\} \underset{n \rightarrow \infty}{ } 1$

References

- Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

Phase transition (gaussian case)

Homogeneous case, Gaussian entries

- We plot the frequency of positive solutions over 10000 trials for the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{1}{\kappa \sqrt{\log (n)}} \frac{A}{\sqrt{n}} \boldsymbol{x}^{*}
$$

as a function of the parameter κ.

Phase transition (gaussian case)

Homogeneous case, Gaussian entries

- We plot the frequency of positive solutions over 10000 trials for the system

$$
\boldsymbol{x}^{*}=\mathbf{1}+\frac{1}{\kappa \sqrt{\log (n)}} \frac{A}{\sqrt{n}} \boldsymbol{x}^{*}
$$

as a function of the parameter κ.

- A phase transition occurs at the critical value $\kappa=\sqrt{2}$.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

A puzzling result by Mazza et al.
A logarithmic correction implies feasibility
Elements of proof

Extensions

Important facts

Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[n]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\check{M}_{n}=\min _{k \in[n]} Z_{k}
$$

Important facts

Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[n]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\check{M}_{n}=\min _{k \in[n]} Z_{k} \quad \text { then } \mathbb{E} \check{M}_{n} \sim-\sqrt{2 \log (n)}
$$

Important facts

Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[n]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\check{M}_{n}=\min _{k \in[n]} Z_{k} \quad \text { then } \mathbb{E} \check{M}_{n} \sim-\sqrt{2 \log (n)}
$$

Existence of the resolvent

- Recall that

$$
\rho\left(\frac{A}{\sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 1 \quad \text { and } \quad\left\|\frac{A}{\sqrt{n}}\right\| \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2 .
$$

Important facts

Gaussian extreme values

- Let $\left(Z_{k}\right)_{k \in[n]}$ i.i.d. $\mathcal{N}(0,1)$ random variables, Denote by

$$
\check{M}_{n}=\min _{k \in[n]} Z_{k} \quad \text { then } \mathbb{E} \check{M}_{n} \sim-\sqrt{2 \log (n)}
$$

Existence of the resolvent

- Recall that

$$
\rho\left(\frac{A}{\sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 1 \quad \text { and } \quad\left\|\frac{A}{\sqrt{n}}\right\| \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2 .
$$

As a consequence, if $\boldsymbol{\alpha}>1$ then $\left(I-\frac{A}{\alpha \sqrt{n}}\right)$ is eventually invertible and

$$
\boldsymbol{x}^{*}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{n}}\right)^{-1} \mathbf{1}
$$

is well-defined.

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
x_{k}^{*}=\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}}
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\min _{k \in[n]} x_{k}^{*} \approx 1+\frac{\min _{k \in[n]} Z_{k}}{\alpha}+\cdots
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\min _{k \in[n]} x_{k}^{*} \quad \approx 1+\frac{\min _{k \in[n]} Z_{k}}{\alpha}+\cdots \quad \approx 1-\frac{\sqrt{2 \log (n)}}{\alpha}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\begin{aligned}
\min _{k \in[n]} x_{k}^{*} & \approx 1+\frac{\min _{k \in[n]} Z_{k}}{\alpha}+\cdots \quad \approx \quad 1-\frac{\sqrt{2 \log (n)}}{\alpha} \\
& >0 \quad \text { if } \quad \frac{\sqrt{2 \log (n)}}{\alpha}<1-\delta
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\begin{aligned}
\min _{k \in[n]} x_{k}^{*} & \approx 1+\frac{\min _{k \in[n]} Z_{k}}{\alpha}+\cdots \quad \approx \quad 1-\frac{\sqrt{2 \log (n)}}{\alpha} \\
& >0 \quad \text { if } \quad \frac{\sqrt{2 \log (n)}}{\alpha}<1-\delta \\
& <0 \quad \text { if } \quad \frac{\sqrt{2 \log (n)}}{\alpha}>1+\delta
\end{aligned}
$$

A heuristics for the critical scaling

1. Unfold the resolvent.

$$
\begin{aligned}
x_{k}^{*} & =\left[\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k} \\
& =1+\frac{1}{\alpha} \underbrace{\frac{[A \mathbf{1}]_{k}}{\sqrt{n}}}_{:=Z_{k}}+\frac{1}{\alpha^{2}} \underbrace{\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1} \mathbf{1}\right]_{k}}_{:=R_{k}} \\
& =1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \approx 1+\frac{Z_{k}}{\alpha}+\cdots
\end{aligned}
$$

2. Notice that $Z_{k} \sim \mathcal{N}(0,1)$ and the Z_{k} 's are i.i.d.
3. Conclude

$$
\begin{aligned}
\min _{k \in[n]} x_{k}^{*} & \approx 1+\frac{\min _{k \in[n]} Z_{k}}{\alpha}+\cdots \quad \approx 1-\frac{\sqrt{2 \log (n)}}{\alpha} \\
& >0 \quad \text { if } \quad \frac{\sqrt{2 \log (n)}}{\alpha}<1-\delta \\
& <0 \quad \text { if } \quad \frac{\sqrt{2 \log (n)}}{\alpha}>1+\delta
\end{aligned}
$$

Crux of proof: to handle the remaining term R_{k}

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where }
$$

$$
R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

1. [Truncation] Introduce $\widetilde{R}_{k}=$ truncated version of R_{k}

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

1. [Truncation] Introduce $\widetilde{R}_{k}=$ truncated version of R_{k}
2. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[n]} \widetilde{R}_{k}}{\alpha \alpha^{*}} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

and

$$
\frac{\min _{k \in[n]} \widetilde{R}_{k}}{\alpha \alpha^{*}} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

1. [Truncation] Introduce $\widetilde{R}_{k}=$ truncated version of R_{k}
2. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[n]} \widetilde{R}_{k}}{\alpha \alpha^{*}} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

3. [Gaussian Concentration] if $A \mapsto \widetilde{R}_{k}(A)$ is K-Lipschitz, then

$$
\mathbb{E} e^{\lambda \widetilde{R}_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}}
$$

for GAUSSIAN entries (or entries $\in L S I$)

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

1. [Truncation] Introduce $\widetilde{R}_{k}=$ truncated version of R_{k}
2. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[n]} \widetilde{R}_{k}}{\alpha \alpha^{*}} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

3. [Gaussian Concentration] if $A \mapsto \widetilde{R}_{k}(A)$ is K-Lipschitz, then

$$
\mathbb{E} e^{\lambda \widetilde{R}_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}}
$$

for GAUSSIAN entries (or entries $\in L S I$)
4. [Sub-Gaussiannity of \widetilde{R}_{k}] if

$$
\mathbb{E} e^{\lambda \widetilde{R}_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}} \quad \text { then } \quad \mathbb{E} \max _{k} \widetilde{R}_{k} \leq K \sqrt{2 \log (n)}
$$

Elements of proof

Recall that the feasible solution $\boldsymbol{x}^{*}=\left(x_{k}^{*}\right)$ writes

$$
x_{k}^{*}=1+\frac{Z_{k}}{\alpha}+\frac{R_{k}}{\alpha^{2}} \quad \text { where } \quad R_{k}=\left[\left(\frac{A}{\sqrt{n}}\right)^{2}\left(I-\frac{A}{\alpha \sqrt{n}}\right)^{-1}\right]_{k}
$$

1. [Truncation] Introduce $\widetilde{R}_{k}=$ truncated version of R_{k}
2. [Extreme values of dependent variables] Sufficient to prove that

$$
\frac{\max _{k \in[n]} \widetilde{R}_{k}}{\alpha \alpha^{*}} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

and

3. [Gaussian Concentration] if $A \mapsto \widetilde{R}_{k}(A)$ is K-Lipschitz, then

$$
\mathbb{E} e^{\lambda \widetilde{R}_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}}
$$

for GAUSSIAN entries (or entries $\in L S I$)
4. [Sub-Gaussiannity of \widetilde{R}_{k}] if

$$
\mathbb{E} e^{\lambda \widetilde{R}_{k}} \leq e^{\frac{K^{2} \lambda^{2}}{2}} \quad \text { then } \quad \mathbb{E} \max _{k} \widetilde{R}_{k} \leq K \sqrt{2 \log (n)}
$$

\Rightarrow The main effort is to prove that $A \mapsto \widetilde{R}_{k}(A)$ is K-Lipschitz.

A truncated version of the remainder term

- Let $\varphi: \mathbb{R}^{+} \rightarrow[0,1]$ a smooth cut-off function

A truncated version of the remainder term

- Let $\varphi: \mathbb{R}^{+} \rightarrow[0,1]$ a smooth cut-off function

- Recall that $\left\|\frac{A}{\sqrt{n}}\right\| \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2$,

A truncated version of the remainder term

- Let $\varphi: \mathbb{R}^{+} \rightarrow[0,1]$ a smooth cut-off function

- Recall that $\left\|\frac{A}{\sqrt{n}}\right\| \frac{\text { a.s. }}{n \rightarrow \infty} 2, \quad$ consider $\tilde{R}_{k}=\varphi\left(\left\|\frac{A}{\sqrt{n}}\right\|\right) R_{k}$

A truncated version of the remainder term

- Let $\varphi: \mathbb{R}^{+} \rightarrow[0,1]$ a smooth cut-off function

- Recall that $\left\|\frac{A}{\sqrt{n}}\right\| \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 2, \quad$ consider $\tilde{R}_{k}=\varphi\left(\left\|\frac{A}{\sqrt{n}}\right\|\right) R_{k}$
- Notice that

$$
\begin{aligned}
& \mathbb{P}\left(\max _{k \in[n]} R_{k} \neq \max _{k \in[N]} \tilde{R}_{k}\right) \\
& \quad \leq \mathbb{P}\left(\exists k_{0}, R_{k_{0}} \neq \tilde{R}_{k_{0}}\right)=\mathbb{P}(\|A / \sqrt{n}\| \geq 2+\eta) \xrightarrow[n \rightarrow \infty]{ } 0
\end{aligned}
$$

A truncated version of the remainder term

- Let $\varphi: \mathbb{R}^{+} \rightarrow[0,1]$ a smooth cut-off function

- Recall that $\left\|\frac{A}{\sqrt{n}}\right\| \frac{\text { a.s. }}{n \rightarrow \infty} 2, \quad$ consider $\tilde{R}_{k}=\varphi\left(\left\|\frac{A}{\sqrt{n}}\right\|\right) R_{k}$
- Notice that

$$
\begin{aligned}
& \mathbb{P}\left(\max _{k \in[n]} R_{k} \neq \max _{k \in[N]} \tilde{R}_{k}\right) \\
& \quad \leq \mathbb{P}\left(\exists k_{0}, R_{k_{0}} \neq \tilde{R}_{k_{0}}\right)=\mathbb{P}(\|A / \sqrt{n}\| \geq 2+\eta) \xrightarrow[n \rightarrow \infty]{ } 0
\end{aligned}
$$

- No asymptotic loss when replacing R_{k} by \widetilde{R}_{k}.

Proof of sub-gaussianity of \tilde{R}_{k} : concentration

- We first prove that $A \mapsto \tilde{R}_{k}(A)$ is K-lipschitz:

$$
\left|\tilde{R}_{k}(A)-\tilde{R}_{k}(B)\right| \leq K \sqrt{\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}}
$$

Proof of sub-gaussianity of \tilde{R}_{k} : concentration

- We first prove that $A \mapsto \tilde{R}_{k}(A)$ is K-lipschitz:

$$
\left|\tilde{R}_{k}(A)-\tilde{R}_{k}(B)\right| \leq K \sqrt{\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}}
$$

and then rely on Tsirelson-Ibragimov-Sudakov's inequality which immediatly yields sub-gaussianity.

Proof of sub-gaussianity of \tilde{R}_{k} : concentration

- We first prove that $A \mapsto \tilde{R}_{k}(A)$ is K-lipschitz:

$$
\left|\tilde{R}_{k}(A)-\tilde{R}_{k}(B)\right| \leq K \sqrt{\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}}
$$

and then rely on Tsirelson-Ibragimov-Sudakov's inequality which immediatly yields sub-gaussianity.

- In order to prove the Lipschitz property, we first get a bound for the gradient

$$
\left\|\nabla \tilde{R}_{k}(A)\right\| \leq K
$$

Proof of sub-gaussianity of \tilde{R}_{k} : concentration

- We first prove that $A \mapsto \tilde{R}_{k}(A)$ is K-lipschitz:

$$
\left|\tilde{R}_{k}(A)-\tilde{R}_{k}(B)\right| \leq K \sqrt{\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}}
$$

and then rely on Tsirelson-Ibragimov-Sudakov's inequality which immediatly yields sub-gaussianity.

- In order to prove the Lipschitz property, we first get a bound for the gradient

$$
\left\|\nabla \tilde{R}_{k}(A)\right\| \leq K
$$

for matrices A with simple maximal singular value $\sqrt{\lambda_{\max }\left(\frac{A A^{*}}{n}\right)}=\left\|\frac{A}{n}\right\|$ (due to the truncation, we need to differentiate the spectral norm).

Proof of sub-gaussianity of \tilde{R}_{k} : concentration

- We first prove that $A \mapsto \tilde{R}_{k}(A)$ is K-lipschitz:

$$
\left|\tilde{R}_{k}(A)-\tilde{R}_{k}(B)\right| \leq K \sqrt{\sum_{i j}\left(A_{i j}-B_{i j}\right)^{2}}
$$

and then rely on Tsirelson-Ibragimov-Sudakov's inequality which immediatly yields sub-gaussianity.

- In order to prove the Lipschitz property, we first get a bound for the gradient

$$
\left\|\nabla \tilde{R}_{k}(A)\right\| \leq K
$$

for matrices A with simple maximal singular value $\sqrt{\lambda_{\max }\left(\frac{A A^{*}}{n}\right)}=\left\|\frac{A}{n}\right\|$ (due to the truncation, we need to differentiate the spectral norm).

- We then proceed by density to complete the proof of the Lipschitz property.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions
Sparse interactions
The elliptical model
Non-Homogeneous case

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions.

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.
- Consider the model

$$
B=\frac{1}{\alpha \sqrt{d}} \mathcal{D} \circ A=\frac{1}{\alpha \sqrt{d}}\left(d_{i j} A_{i j}\right)
$$

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.
- Consider the model

$$
B=\frac{1}{\alpha \sqrt{d}} \mathcal{D} \circ A=\frac{1}{\alpha \sqrt{d}}\left(d_{i j} A_{i j}\right)
$$

and assume one of the following:

1. $d \propto n$

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.
- Consider the model

$$
B=\frac{1}{\alpha \sqrt{d}} \mathcal{D} \circ A=\frac{1}{\alpha \sqrt{d}}\left(d_{i j} A_{i j}\right)
$$

and assume one of the following:

1. $d \propto n$
2. $d \geq \log (n)$ and \mathcal{D} has a block matrix structure (to be detailed).

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.
- Consider the model

$$
B=\frac{1}{\alpha \sqrt{d}} \mathcal{D} \circ A=\frac{1}{\alpha \sqrt{d}}\left(d_{i j} A_{i j}\right)
$$

and assume one of the following:

1. $d \propto n$
2. $d \geq \log (n)$ and \mathcal{D} has a block matrix structure (to be detailed).

Theorem (Akjouj, N.)

Assume either condition 1 or 2 , then the same phase transition as before occurs around $\alpha_{n}^{*} \sim \sqrt{2 \log (n)}$.

Sparse interactions

Strong motivation in theoretical and empirical ecology to study sparse interactions. Model

- Let $\mathcal{D}=\left(d_{i j}\right)$ the (deterministic) $n \times n$ adjacency matrix of a d-regular graph, $(d<n)$,
- Let $A=\left(A_{i j}\right)$ a $n \times n$ matrix with i.i.d. $\mathcal{N}(0,1)$ entries.
- Consider the model

$$
B=\frac{1}{\alpha \sqrt{d}} \mathcal{D} \circ A=\frac{1}{\alpha \sqrt{d}}\left(d_{i j} A_{i j}\right)
$$

and assume one of the following:

1. $d \propto n$
2. $d \geq \log (n)$ and \mathcal{D} has a block matrix structure (to be detailed).

Theorem (Akjouj, N.)

Assume either condition 1 or 2 , then the same phase transition as before occurs around $\alpha_{n}^{*} \sim \sqrt{2 \log (n)}$.

References

- Explorability and the origin of network sparsity in living systems, by Busiello et al. Scientific reports, 2017.
- Feasibility of sparse large Lotka-Volterra ecosystems, by Akjouj and N., 2021.

More on the block matrix structure assumption
The block matrix structure

- $n=d \times m$

More on the block matrix structure assumption

The block matrix structure

- $n=d \times m$
- Consider a $m \times m$ permutation matrix $P_{\sigma} \in \mathcal{S}_{m}$,

More on the block matrix structure assumption

The block matrix structure

- $n=d \times m$
- Consider a $m \times m$ permutation matrix $P_{\sigma} \in \mathcal{S}_{m}$,
- let $J=\mathbf{1}_{d} \mathbf{1}_{d}^{T}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$ and $\mathcal{D}=P_{\sigma} \otimes J$

More on the block matrix structure assumption

The block matrix structure

- $n=d \times m$
- Consider a $m \times m$ permutation matrix $P_{\sigma} \in \mathcal{S}_{m}$,
- let $J=\mathbf{1}_{d} \mathbf{1}_{d}^{T}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$ and $\mathcal{D}=P_{\sigma} \otimes J$
- \mathcal{D} is the adjacency matrix of a d-regular graph with a block matrix structure.

More on the block matrix structure assumption

The block matrix structure

- $n=d \times m$
- Consider a $m \times m$ permutation matrix $P_{\sigma} \in \mathcal{S}_{m}$,
- let $J=\mathbf{1}_{d} \mathbf{1}_{d}^{T}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$ and $\mathcal{D}=P_{\sigma} \otimes J$
- \mathcal{D} is the adjacency matrix of a d-regular graph with a block matrix structure.

Example where $m=4$
$P_{\sigma}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), \mathcal{D}=\left(\begin{array}{llll}J & 0 & 0 & 0 \\ 0 & 0 & 0 & J \\ 0 & J & 0 & 0 \\ 0 & 0 & J & 0\end{array}\right), \mathcal{D} \circ A=\left(\begin{array}{cccc}A^{(1)} & 0 & 0 & 0 \\ 0 & 0 & 0 & A^{(2)} \\ 0 & A^{(3)} & 0 & 0 \\ 0 & 0 & A^{(4)} & 0\end{array}\right)$

More on the block matrix structure assumption

The block matrix structure

- $n=d \times m$
- Consider a $m \times m$ permutation matrix $P_{\sigma} \in \mathcal{S}_{m}$,
- let $J=\mathbf{1}_{d} \mathbf{1}_{d}^{T}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$ and $\mathcal{D}=P_{\sigma} \otimes J$
- \mathcal{D} is the adjacency matrix of a d-regular graph with a block matrix structure.

Example where $m=4$

$P_{\sigma}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), \mathcal{D}=\left(\begin{array}{llll}J & 0 & 0 & 0 \\ 0 & 0 & 0 & J \\ 0 & J & 0 & 0 \\ 0 & 0 & J & 0\end{array}\right), \mathcal{D} \circ A=\left(\begin{array}{cccc}A^{(1)} & 0 & 0 & 0 \\ 0 & 0 & 0 & A^{(2)} \\ 0 & A^{(3)} & 0 & 0 \\ 0 & 0 & A^{(4)} & 0\end{array}\right)$

Open question

- Possible to relax this block structure assumption? Simulations suggest yes.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions
Sparse interactions
The elliptical model

Non-Homogeneous case

Feasibility for the elliptical model

Theorem (Clenet, El Ferchichi, N.)

Consider the model

$$
B(\boldsymbol{\alpha})=\frac{A}{\boldsymbol{\alpha} \sqrt{n}}+\frac{\mu}{n} \mathbf{1 1}^{T}
$$

and assume that $\mu<1$. Then the same phase transition as before occurs.

Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions
Sparse interactions
The elliptical model
Non-Homogeneous case

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq(1-\delta) \frac{\sigma_{r}(n)}{r_{\max }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{\longrightarrow} 0$

Non-homogeneous case I

Let \boldsymbol{r} is $N \times 1$ deterministic. We are interested in the equation

$$
\boldsymbol{x}=\boldsymbol{r}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{r}_{\min }(n)=\min _{k} r_{k} \\
\boldsymbol{r}_{\max }(n)=\max _{k} r_{k} \\
\sigma_{\boldsymbol{r}}(n)=\sqrt{\frac{1}{N} \sum_{k} r_{k}^{2}}
\end{array}\right.
$$

Theorem

Assume that there exist $\kappa, K>0$ such that $\kappa \leq \boldsymbol{r}_{\text {min }}(n) \leq \boldsymbol{r}_{\max }(n) \leq K$ then

- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \leq(1-\delta) \frac{\sigma_{r}(n)}{r_{\max }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{\longrightarrow} 0$
- if $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \geq(1+\delta) \frac{\sigma_{\boldsymbol{r}}(n)}{r_{\min }(n)}$ then $\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 1$.

Non-homogeneous case II

- In the non-homogeneous case, there is a transition buffer

$$
\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \in\left[\frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\max }(n)}, \frac{\sigma_{\boldsymbol{r}}(n)}{\boldsymbol{r}_{\min }(n)}\right]
$$

and not a sharp transition at $\frac{\boldsymbol{\alpha}_{N}}{\boldsymbol{\alpha}_{N}^{*}} \sim 1$.

Thank you for your attention!

[^0]: No maths $=$ no understanding $\quad P$. Rossberg, in Food webs and biodiversity (Wiley)

[^1]: Extensions

