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Lotka-Volterra systems of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given
by a system of Lotka-Volterra equations:

dxk(t)

dt
= xk(rk − xk + (Bx)k) , k ∈ [n] , x = (xk) .

Here (Bx)k =
∑
`Bk`x`.

I n is the number of species in a given foodweb,

I xk = xk(t) is the abundance (=population) of species k at time t,

I r = (rk) where rk is the intrinsic growth rate of species k,
I B = (Bk`) where Bk` is the interaction between species ` and species k

• if Bk` > 0 the interaction is mutualistic
• if Bk` < 0 the interaction is competitive

Remarks

1. if x|t=0 > 0 then for all t > 0, x(t) > 0.

2. if B = 0 (no interactions), we recover the logistic equation

dxk(t)

dt
= xk(rk − xk) .
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Questions

I Existence of an equilibrium x∗ = (x∗k) such that

x∗k(rk − x∗k + (Bx)k) = 0 ∀k ∈ [n] .

I Stability of this equilibrium: if x|t=0 > 0 do we have

x(t) −−−−→
t→∞

x∗?

I Feasibility of this equilibrium: x∗k > 0 for all k ∈ [n]

I Species extinction x∗k = 0 for some k ∈ [n] ? In the latter case, we have{
surviving species if x∗k > 0 ,

vanishing species if x∗k = 0 .
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Assumption 1: A random model for the interaction matrix B

I The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

I An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

I it is a very rough approach but we need a model otherwise ..

No maths = no understanding P. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

I The i.i.d model: poor adequation to reality but a good benchmark to explore the
mathematical tractability

I The elliptic model: encodes the natural correlation between Bk` and B`k but
limited because of a unique single trend

EBk` = µ(n) ∀k, ` ∈ [n] .

I Sparse models: encodes the fact that a species only interacts with d� n other
species.
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Assumption 2: n → ∞

This assuption is relevant

I to model large foodwebs with many species

I to take advantage of self-averaging properties of large random matrices

I and leverage on random matrix theory

We need to normalize accordingly the interaction matrix so that (for instance)

‖B‖ = ‖Bn‖ = O(1)

as n→∞.
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Equilibrium and global stability

Theorem (Takeuchi & Adachi 1980)

Consider the LV system

ẋk = xk(rk − xk + (Bx)k) , k ∈ [n] . (1)

If there exists a diagonal positive matrix W such that

W (−I +B) + (−I +BT )W < 0 (negative definite)

then if x|t=0 > 0, system (1) has a unique non negative stable equilibrium:

x(t) −−−−→
t→∞

x∗ .

Remark on uniqueness

I if x|t=0 > 0 then x∗ is the unique solution of the Linear Complementarity
Problem (LCP): 

xk ≥ 0

rk − xk + (Bx)k ≤ 0

xk(rk − xk + (Bx)k) = 0

∀k ∈ [n]

I if x1|t=0 = 0, just consider the subsystem where x1’s interactions are erased in
matrix B.
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Equilibrium and global stability: i.i.d. model

Corollary I (RMT - i.i.d. case)

Assume that Bk` = Ak`
α
√
n

where


Ak` i.i.d. ,

EAk` = 0 ,

EA2
k` = 1

+ E|Ak`|4 <∞ .

I If α >
√

2 then a.s. eventually system (1) has a non negative globally stable
equilibrium point.

Proof

I We look for W diagonal such that W
(
−I + A

α
√
n

)
+
(
−I + AT

α
√
n

)
W < 0 .

I Simply take W = I then

−I +
A

α
√
n
− I +

AT

α
√
n

= −2I +

√
2

α

(
A+AT
√

2
√
n

)
︸ ︷︷ ︸
Wigner matrix

Well-known that λmax

(
A+AT√

2
√
n

)
a.s.−−−−→
n→∞

2 - we conclude easily.

I The choice W = I might not be optimal.
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Equilibrium and global stability: elliptic model I

Let A = (Aij) a n× n matrix. Assume that

I The (Aii) are i.i.d N (0, 1), the (Aij , Aji) are i.i.d. N2

(
0,

(
1, ρ
ρ, 1

))
I The (Aii) and (Aij , Aji) are independent.
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Figure: Centered elliptical model (µ = 0) for various correlations ρ. Notice that ρ = 0 represents
the model with i.i.d. entries.
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Equilibrium and global stability: elliptic model II

Consider the model

B =
A

α
√
n

+
µ

n
11T , EBk` =

µ

n
,
∥∥∥µ
n
11T

∥∥∥ = µ .
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Outlier for elliptic random matrices ( = 0.5)

Figure: Elliptic model with µ = 2. The outlier is very close to µ.
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Equilibrium and global stability: elliptic model III

Corollary II (RMT - elliptic case)

Consider the following set of admissible parameters:

A =

{
(ρ, α, µ) ∈ (−1, 1)× (0,∞)× R ,

α >
√

2(1 + ρ), µ <
1

2
+

1

2

√
1−

2(1 + ρ)

α2

}

I If (ρ, α, µ) ∈ A then a.s. eventually system (1) has a non negative globally stable
equilibrium point.

Figure: Representation of the set of admissible parameters A by a heat map. The x-axis
corresponds to ρ, the y-axis to σ and the intensity of the color µ.
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Open question

Statistical properties of the equilibrium
Consider the i.i.d. model and α >

√
2. The equilibrium x∗ is the solution of the LCP

problem 
xk ≥ 0

rk − xk + (Bx)k ≤ 0

xk(rk − xk + (Bx)k) = 0

∀k ∈ [n]

Notice that x∗ is random.

I For fixed α, is it possible to asymptotically estimate the number of
vanishing/surviving species?

I + other statistical properties of equilibrium x∗?

I Yes, using statistical physics techniques, but no mathematical proof so far.

Reference

I Ecological communities with Lotka-Volterra dynamics, G. Bunin, Phys. Rev. E
(2017)
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Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility
A puzzling result by Mazza et al.
A logarithmic correction implies feasibility
Elements of proof

Extensions
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Feasible equilibrium: a simple linear equation

I Recall the LV system
ẋk = xk(rk − xk + (Bx)k) .

I We investigate the case where there exists a positive equilibrium

x∗ > 0 ⇔ x∗k > 0 ∀k ∈ [n] .

I In theoretical ecology it is called a feasible equilibrium and is of interest because
all species survive.

I Such an equilibrium should satisfy

rk − x∗k + (Bx∗)k = 0 ⇔ x∗ = r +Bx∗ , x∗ > 0.

I If matrix I −B is invertible, then

x∗ = (I −B)−1r .
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No feasible equilibrium under standard normalization

Consider the simplified (r = 1) equation of feasible equilibrium x∗ = 1 +Bx∗

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Mazza et al. establish that if

B =
A

α
√
n
, α > 4

and Ak` ∼ N (0, 1) i.i.d., there is no feasible equilibrium with proba 1

P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
N→∞

0

References

I ”The feasibility of equilibria in large ecosystems: A primary but neglected concept
in the complexity-stability debate”,
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018

I ”A chaos hypothesis for some large systems of random equations”. Geman and
Hwang, 1982.
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Elements of proof

Theorem (Geman, Hwang)

I Let M fixed, α > 4 and x∗ = 1 + A
α
√
n
x∗

I then  x∗1
...
x∗M

 D−−−−→
N→∞

NM
(
1M ,

IM

α2 − 1

)

Corollary

I If α > 4 fixed, the probability to obtain a positive solution goes to zero:

P
{

inf
k∈[n]

x∗k > 0

}
≤ P

{
inf

k∈[M ]
x∗k > 0

}
∼

∏
k∈[M ]

P {x∗k > 0} −−−−−→
M→∞

0 .

Conclusion

I Feasible solutions for x∗ = 1 +
A

α
√
N
x∗ are eventually extremely rare.
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Feasibility of the solution

Consider the system

x∗ = 1 +
A

α
√
n
x∗ where α = αn −−−−→

n→∞
∞ .

Denote by α∗n =
√

2 log(n) .

Theorem (phase transition, Bizeul-N. ’21)

I If αn ≤ (1− δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

0 .

I If αn ≥ (1 + δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

1 .

References

I Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

19



Feasibility of the solution

Consider the system

x∗ = 1 +
A

α
√
n
x∗ where α = αn −−−−→

n→∞
∞ .

Denote by α∗n =
√

2 log(n) .

Theorem (phase transition, Bizeul-N. ’21)

I If αn ≤ (1− δ)
√

2 log(n) for n� 1

then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

0 .

I If αn ≥ (1 + δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

1 .

References

I Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

19



Feasibility of the solution

Consider the system

x∗ = 1 +
A

α
√
n
x∗ where α = αn −−−−→

n→∞
∞ .

Denote by α∗n =
√

2 log(n) .

Theorem (phase transition, Bizeul-N. ’21)

I If αn ≤ (1− δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

0 .

I If αn ≥ (1 + δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

1 .

References

I Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

19



Feasibility of the solution

Consider the system

x∗ = 1 +
A

α
√
n
x∗ where α = αn −−−−→

n→∞
∞ .

Denote by α∗n =
√

2 log(n) .

Theorem (phase transition, Bizeul-N. ’21)

I If αn ≤ (1− δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

0 .

I If αn ≥ (1 + δ)
√

2 log(n) for n� 1

then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

1 .

References

I Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

19



Feasibility of the solution

Consider the system

x∗ = 1 +
A

α
√
n
x∗ where α = αn −−−−→

n→∞
∞ .

Denote by α∗n =
√

2 log(n) .

Theorem (phase transition, Bizeul-N. ’21)

I If αn ≤ (1− δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

0 .

I If αn ≥ (1 + δ)
√

2 log(n) for n� 1 then P
{

inf
k∈[n]

x∗k > 0

}
−−−−→
n→∞

1 .

References

I Positive solutions for large random linear systems, Bizeul-N., Proc AMS, 2021

19



Phase transition (gaussian case)

I We plot the frequency of positive solutions over 10000 trials for the system

x∗ = 1 +
1

κ
√

log(n)

A
√
n
x∗

as a function of the parameter κ.

I A phase transition occurs at the critical value κ =
√

2.
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Important facts

Gaussian extreme values

I Let (Zk)k∈[n] i.i.d. N (0, 1) random variables, Denote by

M̌n = min
k∈[n]

Zk

then EM̌n ∼ −
√

2 log(n)

Existence of the resolvent

I Recall that

ρ

(
A
√
n

)
a.s.−−−−→
n→∞

1 and

∥∥∥∥ A
√
n

∥∥∥∥ a.s.−−−−→
n→∞

2 .

As a consequence, if α > 1 then
(
I − A

α
√
n

)
is eventually invertible and

x∗ =

(
I −

A

α
√
n

)−1

1

is well-defined.
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A heuristics for the critical scaling
1. Unfold the resolvent.

x∗k =

[(
I −

A

α
√
n

)−1

1

]
k

= 1 +
1

α

[A1]k√
n︸ ︷︷ ︸

:=Zk

+
1

α2

( A
√
n

)2 (
I −

A

α
√
n

)−1

1


k︸ ︷︷ ︸

:=Rk

= 1 +
Zk

α
+
Rk

α2
≈ 1 +

Zk

α
+ · · ·

2. Notice that Zk ∼ N (0, 1) and the Zk’s are i.i.d.

3. Conclude

min
k∈[n]

x∗k ≈ 1 +
mink∈[n] Zk

α
+ · · · ≈ 1−

√
2 log(n)

α

> 0 if

√
2 log(n)

α
< 1− δ

< 0 if

√
2 log(n)

α
> 1 + δ

Crux of proof: to handle the remaining term Rk
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Elements of proof
Recall that the feasible solution x∗ = (x∗k) writes

x∗k = 1 +
Zk

α
+
Rk

α2
where Rk =

[(
A
√
n

)2 (
I −

A

α
√
n

)−1
]
k

1. [Truncation] Introduce R̃k = truncated version of Rk
2. [Extreme values of dependent variables] Sufficient to prove that

maxk∈[n] R̃k

αα∗
P−−−−→

n→∞
0 and

mink∈[n] R̃k

αα∗
P−−−−→

n→∞
0 .

3. [Gaussian Concentration] if A 7→ R̃k(A) is K-Lipschitz, then

EeλR̃k ≤ e
K2λ2

2

for GAUSSIAN entries (or entries ∈ LSI)

4. [Sub-Gaussiannity of R̃k] if

EeλR̃k ≤ e
K2λ2

2 then Emax
k

R̃k ≤ K
√

2 log(n)

⇒ The main effort is to prove that A 7→ R̃k(A) is K-Lipschitz.
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A truncated version of the remainder term

I Let ϕ : R+ → [0, 1] a smooth cut-off function

x
2 + η 3

1
ϕ

y

I Recall that
∥∥∥ A√

n

∥∥∥ a.s.−−−−→
n→∞

2, consider R̃k = ϕ

(∥∥∥∥ A
√
n

∥∥∥∥)Rk
I Notice that

P
(

max
k∈[n]

Rk 6= max
k∈[N ]

R̃k

)
≤ P(∃k0, Rk0 6= R̃k0 ) = P

(∥∥A/√n∥∥ ≥ 2 + η
)
−−−−→
n→∞

0 .

I No asymptotic loss when replacing Rk by R̃k.
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Proof of sub-gaussianity of R̃k: concentration

I We first prove that A 7→ R̃k(A) is K-lipschitz:

|R̃k(A)− R̃k(B)| ≤ K
√∑

ij

(Aij −Bij)2

and then rely on Tsirelson-Ibragimov-Sudakov’s inequality which immediatly
yields sub-gaussianity.

I In order to prove the Lipschitz property, we first get a bound for the gradient

‖∇R̃k(A)‖ ≤ K

for matrices A with simple maximal singular value

√
λmax

(
AA∗
n

)
=
∥∥∥An ∥∥∥ (due

to the truncation, we need to differentiate the spectral norm).

I We then proceed by density to complete the proof of the Lipschitz property.
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Lotka-Volterra systems of coupled differential equations

Equilibrium and stability

Feasibility

Extensions
Sparse interactions
The elliptical model
Non-Homogeneous case
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Sparse interactions
Strong motivation in theoretical and empirical ecology to study sparse interactions.

Model

I Let D = (dij) the (deterministic) n× n adjacency matrix of a d-regular graph,
(d < n),

I Let A = (Aij) a n× n matrix with i.i.d. N (0, 1) entries.

I Consider the model

B =
1

α
√
d
D ◦A =

1

α
√
d

(dijAij)

and assume one of the following:

1. d ∝ n
2. d ≥ log(n) and D has a block matrix structure (to be detailed).

Theorem (Akjouj, N.)
Assume either condition 1 or 2, then the same phase transition as before occurs

around α∗n ∼
√

2 log(n) .

References

I Explorability and the origin of network sparsity in living systems, by Busiello et al.
Scientific reports, 2017.

I Feasibility of sparse large Lotka-Volterra ecosystems, by Akjouj and N., 2021.
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More on the block matrix structure assumption

The block matrix structure

I n = d×m

I Consider a m×m permutation matrix Pσ ∈ Sm,

I let J = 1d1
T
d =

1 · · · 1
...

...
1 · · · 1

 and D = Pσ ⊗ J

I D is the adjacency matrix of a d-regular graph with a block matrix structure.

Example where m = 4

Pσ =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , D =


J 0 0 0
0 0 0 J
0 J 0 0
0 0 J 0

 , D◦A =


A(1) 0 0 0

0 0 0 A(2)

0 A(3) 0 0

0 0 A(4) 0



Open question

I Possible to relax this block structure assumption? Simulations suggest yes.
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Feasibility for the elliptical model

Theorem (Clenet, El Ferchichi, N.)
Consider the model

B(α) =
A

α
√
n

+
µ

n
11T ,

and assume that µ < 1. Then the same phase transition as before occurs.
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Non-homogeneous case I

Let r is N × 1 deterministic. We are interested in the equation

x = r +
A

α
√
N
x where


rmin(n) = mink rk
rmax(n) = maxk rk

σr(n) =
√

1
N

∑
k r

2
k

Theorem

Assume that there exist κ,K > 0 such that κ ≤ rmin(n) ≤ rmax(n) ≤ K then

I if αN
α∗
N
≤ (1− δ) σr(n)

rmax(n)
then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I if αN
α∗
N
≥ (1 + δ)

σr(n)
rmin(n)

then P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

33



Non-homogeneous case I

Let r is N × 1 deterministic. We are interested in the equation

x = r +
A

α
√
N
x where


rmin(n) = mink rk
rmax(n) = maxk rk

σr(n) =
√

1
N

∑
k r

2
k

Theorem

Assume that there exist κ,K > 0 such that κ ≤ rmin(n) ≤ rmax(n) ≤ K then

I if αN
α∗
N
≤ (1− δ) σr(n)

rmax(n)
then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I if αN
α∗
N
≥ (1 + δ)

σr(n)
rmin(n)

then P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

33



Non-homogeneous case I

Let r is N × 1 deterministic. We are interested in the equation

x = r +
A

α
√
N
x where


rmin(n) = mink rk
rmax(n) = maxk rk

σr(n) =
√

1
N

∑
k r

2
k

Theorem

Assume that there exist κ,K > 0 such that κ ≤ rmin(n) ≤ rmax(n) ≤ K then

I if αN
α∗
N
≤ (1− δ) σr(n)

rmax(n)
then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I if αN
α∗
N
≥ (1 + δ)

σr(n)
rmin(n)

then P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

33



Non-homogeneous case I

Let r is N × 1 deterministic. We are interested in the equation

x = r +
A

α
√
N
x where


rmin(n) = mink rk
rmax(n) = maxk rk

σr(n) =
√

1
N

∑
k r

2
k

Theorem

Assume that there exist κ,K > 0 such that κ ≤ rmin(n) ≤ rmax(n) ≤ K then

I if αN
α∗
N
≤ (1− δ) σr(n)

rmax(n)
then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I if αN
α∗
N
≥ (1 + δ)

σr(n)
rmin(n)

then P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

33



Non-homogeneous case II

I In the non-homogeneous case, there is a transition buffer

αN

α∗N
∈
[
σr(n)

rmax(n)
,
σr(n)

rmin(n)

]
and not a sharp transition at αN

α∗
N
∼ 1.
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Thank you for your attention!
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