Strong asymptotic freeness for independent uniform variables on compact groups

Charles Bordenave

CNRS \& Aix-Marseille University

Joint work with Benoît Collins (Kyoto University)

Representations in high dimension

Unitary representation

Let G be a compact group and ρ be a unitary representation of G in \mathbb{C}^{N}, that is, for $g, h \in G$,

$$
\rho(g) \in \mathbb{U}_{N}, \quad \rho(e)=I_{N} \quad \text { and } \quad \rho(g \cdot h)=\rho(g) \cdot \rho(h)
$$

For example, if $G=\mathbb{U}_{n}, \mathbb{O}_{n}$ or \mathbb{S}_{n} :
\star standard rep : $N=n, \rho(U)=U$,
\star determinant : $N=1, \rho(U)=\operatorname{det}(U)$,
\star tensor product : $N=n^{q_{+}+q_{-}}, \rho(U)=U^{\otimes q_{+}} \otimes \bar{U}^{\otimes q_{-}}$.

Representations in high dimension

We consider a sequence of representations ρ_{N} of growing dimensions.

Non-commutative probability offers a natural framework to describe limits of representations of high dimensions, Biane $(1995,1998)$.

Here, we explore a probabilistic direction and study the representations by sampling group elements from the Haar measure.

Non-commutative probability space

NCPS : pair formed by a unital algebra \mathcal{A} and a linear functional $\tau: \mathcal{A} \rightarrow \mathbb{C}$ such that $\tau(1)=1$. E.g. $\mathcal{A}=M_{N}(\mathbb{C}), \tau=\frac{1}{N} \operatorname{Tr}$.
\mathcal{A} is a \star-algebra: it comes with a linear involution such that $(a b)^{*}=b^{*} a^{*}$ and $\tau\left(a^{*}\right)=\overline{\tau(a)}$.

Assume that $\tau\left(a a^{*}\right) \geqslant 0$ with equality iff $a=0$ (positive and faithful).

We may define the norms

$$
\|a\|_{2}=\sqrt{\tau\left(a a^{*}\right)} \quad \text { and } \quad\|a\|=\sup \left\{\|a b\|_{2}:\|b\|_{2} \leqslant 1\right\}
$$

Non-commutative probability space

In this talk, only two examples of NCPS.

Matrices : $\mathcal{A}=M_{N}(\mathbb{C}), \tau=\frac{1}{N} \operatorname{Tr}$ and $\|\cdot\|$ is the operator norm.

Group algebra : G a countable group and \mathcal{A} the algebra on $\ell^{2}(G)$ generated by the left multiplication operators :

$$
\lambda(g)\left(\delta_{h}\right)=\delta_{g h} .
$$

That is, λ is the left regular representation. It is unitary.
For $\tau=\left\langle\delta_{e}, \cdot \delta_{e}\right\rangle,\|\cdot\|$ coincides with the operator norm on $\ell^{2}(G)$.

Convergence in NC probability spaces

Let $\left(v_{1, N}, \ldots, v_{d, N}\right)$ be elements of a NCPS $\left(\mathcal{A}_{N}, \tau_{N}\right)$ and $\left(v_{1}, \ldots, v_{d}\right)$ be elements of a $\operatorname{NCPS}(\mathcal{A}, \tau)$.

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoins,

$$
\tau_{N}\left(P\left(v_{1, N}, \ldots, v_{d, N}\right)\right) \rightarrow \tau\left(P\left(v_{1}, \ldots, v_{d}\right)\right) .
$$

E.g. $P=v_{1} v_{2}-v_{2} v_{1}, P=v_{1}+v_{1}^{*}+v_{2}+v_{2}^{*}$ or $P=\left(v_{1}+v_{2}\right)\left(v_{1}+v_{2}\right)^{*}$.

Convergence in NC probability spaces

Let $\left(v_{1, N}, \ldots, v_{d, N}\right)$ be elements of a NCPS $\left(\mathcal{A}_{N}, \tau_{N}\right)$ and $\left(v_{1}, \ldots, v_{d}\right)$ be elements of a $\operatorname{NCPS}(\mathcal{A}, \tau)$.

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoins,

$$
\tau_{N}\left(P\left(v_{1, N}, \ldots, v_{d, N}\right)\right) \rightarrow \tau\left(P\left(v_{1}, \ldots, v_{d}\right)\right)
$$

E.g. $P=v_{1} v_{2}-v_{2} v_{1}, P=v_{1}+v_{1}^{*}+v_{2}+v_{2}^{*}$ or $P=\left(v_{1}+v_{2}\right)\left(v_{1}+v_{2}\right)^{*}$.

Strong convergence : in addition,

$$
\left\|P\left(v_{1, N}, \ldots, v_{d, N}\right)\right\| \rightarrow\left\|P\left(v_{1}, \ldots, v_{d}\right)\right\| .
$$

Convergence in NC probability spaces

Let $\left(v_{1, N}, \ldots, v_{d, N}\right)$ be elements of a NCPS $\left(\mathcal{A}_{N}, \tau_{N}\right)$ and $\left(v_{1}, \ldots, v_{d}\right)$ be elements of a $\operatorname{NCPS}(\mathcal{A}, \tau)$.

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoints,

$$
\tau_{N}\left(P\left(v_{1, N}, \ldots, v_{d, N}\right)\right) \rightarrow \tau\left(P\left(v_{1}, \ldots, v_{d}\right)\right)
$$

E.g. $P=v_{1} v_{2}-v_{2} v_{1}, P=v_{1}+v_{1}^{*}+v_{2}+v_{2}^{*}$ or $P=\left(v_{1}+v_{2}\right)\left(v_{1}+v_{2}\right)^{*}$.

Strong convergence : in addition,

$$
\left\|P\left(v_{1, N}, \ldots, v_{d, N}\right)\right\| \rightarrow\left\|P\left(v_{1}, \ldots, v_{d}\right)\right\| .
$$

If $\left(v_{1}, \ldots, v_{d}\right)$ are free one speaks of (strong) asymptotic freeness.

Free unitaries

Let \mathbb{F}_{d} be the free group with d free generators g_{1}, \ldots, g_{d}.

The unitary operators on $\ell^{2}\left(\mathbb{F}_{d}\right),\left(\lambda\left(g_{1}\right), \ldots, \lambda\left(g_{d}\right)\right)$ are free.

Voiculescu's freeness

Let (\mathcal{A}, τ) be a NCPS.

Sub-algebras $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}\right)$ are free if

$$
\tau\left(a_{1} a_{2} \cdots a_{k}\right)=0
$$

whenever $\tau\left(a_{i}\right)=0$ and $a_{i} \in \mathcal{A}_{l_{i}}, l_{i} \neq l_{i+1}$.

Elements $\left(v_{1}, \ldots, v_{d}\right)$ are free if the subalgebras they span are free.

Convergence in NC probability spaces

Asymptotic freeness :

- iid GUE matrices, Voiculescu (1991),
- iid Haar distributed unitary matrices, Voiculescu (1998),
- iid uniform permutation matrices, Nica (1993),
- ...

Strong asymptotic freeness :

- iid GUE matrices, Haagerup-Thorbjørnsen (2005), Schultz, Capitaine-Donati, Male, Anderson, Collins-Guionnet-Parraud, Bandeira-Boedihardjo-van Handel, ...
- iid Haar distributed unitary matrices, Collins-Male (2012),
- iid uniform permutation matrices, B-Collins (2019),
- tensor product iid GUE matrices, Belinschi-Capitaine (2022).

The quest of strong convergence

Strong convergence has always very powerful consequences :
$\star \operatorname{Ext}\left(C_{\text {red }}^{*}\left(F_{2}\right)\right)$ is not a group Haagerup-Thorbjørnsen (2005).
\star The generalized Alon's conjecture B-Collins (2019).
\star Cut-off for finite space Markov chains B-Lacoin (2020).

* Hayes' approach to Peterson-Thom conjecture Belinschi-Capitaine (2022).

The quest of strong convergence

Strong convergence has always very powerful consequences :
$\star \operatorname{Ext}\left(C_{\mathrm{red}}^{*}\left(F_{2}\right)\right)$ is not a group Haagerup-Thorbjørnsen (2005).
\star The generalized Alon's conjecture B-Collins (2019).
\star Cut-off for finite space Markov chains B-Lacoin (2020).

* Hayes' approach to Peterson-Thom conjecture Belinschi-Capitaine (2022).

BUT : no known non-trivial deterministic examples and few random examples.

Representations in high dimension

Back to our setting : G a compact group and ρ_{N} a unitary rep on \mathbb{C}^{N}.

We consider U_{1}, \ldots, U_{d} be iid uniform sampled according to the Haar measure on G and set

$$
V_{i, N}=\rho_{N}\left(U_{i}\right) \in \mathbb{U}_{N} .
$$

Question : along a sequence $N \rightarrow \infty$, convergence of $\left(V_{1, N}, \ldots, V_{d, N}\right)$?

In this talk : $G=\mathbb{U}_{n}, \mathbb{O}_{n}$ or \mathbb{S}_{n} and (n, N) both go to infinity.

Alternative motivation I :

Random representations of the free group

Consider the free group \mathbb{F}_{d} with d free generators g_{1}, \ldots, g_{d}.

We set

$$
\rho_{N}^{\text {free }}\left(g_{i}\right)=V_{i, N}=\rho_{N}\left(U_{i}\right) \in \mathbb{U}_{N} .
$$

It extends uniquely to a unitary representation of \mathbb{F}_{d} on
$\Gamma_{N}=\rho_{N}(G): \rho_{N}^{\text {free }}\left(g_{1} g_{2} g_{1}^{-1}\right)=V_{1} V_{2} V_{1}{ }^{*}$. If Γ_{N} is a subgroup of \mathbb{S}_{N} one speaks of an action of \mathbb{F}_{d} on $\{1, \ldots, N\}$.

This random representation is uniform. How close is it to the regular representation of \mathbb{F}_{d} ?

Alternative motivation II : Optimal expander graphs

Construct strong finite dim approximations of operators like this one :

Courtesy of Ryan O'Donnell and Xinyu Wu

Alternative motivation III : Quantum expanders

For $G=\mathbb{U}_{n}$ or \mathbb{O}_{n}, in quantum info theory, the norm of operators like

$$
\sum_{i=1}^{d} U_{i} \otimes \bar{U}_{i}+\left(U_{i} \otimes \bar{U}_{i}\right)^{*}
$$

appears Hastings, Harrow, Pisier.

Strong asymptotic freeness for representations of the unitary group

Tensor product representation

Set $G=\mathbb{U}_{n}$ and consider the rep on \mathbb{C}^{N}, with $N=n^{q}, q_{+}+q_{-}=q$,

$$
V=U^{\otimes q_{+}} \otimes \bar{U}^{\otimes q_{-}} .
$$

If $q_{-}=q_{+}$, it has fixed points for all $U \in \mathbb{U}_{n}$. E.g. for $\mathbb{C}^{n^{2}} \simeq M_{n}(\mathbb{C})$,

$$
(U \otimes \bar{U}) I_{n}=U I_{n} U^{*}=I_{n} .
$$

We denote by H the vector subspace of \mathbb{C}^{N} of such fixed points (fully explicit of $\operatorname{dim}(H)=q_{+}$!).

Tensor product representation

Let $\left(U_{1}, \ldots, U_{d}\right)$ be iid Haar distributed on \mathbb{U}_{n} and

$$
V_{i}=U_{i}^{\otimes q_{+}} \otimes \bar{U}_{i}^{\otimes q_{-}} .
$$

Theorem
Restricted to H^{\perp}, a.s. $\left(V_{1}, \ldots, V_{d}\right)$ are strongly asymptotically free as $n \rightarrow \infty$ and $q=q_{+}+q_{-} \leqslant c \ln (n) / \ln \ln (n)$.

The same statement holds for \mathbb{O}_{n}. Also, for \mathbb{S}_{n} and $q=1,2$.

Tensor product representation

Asymptotic freeness follows from Voiculescu (1998), Collins-Gaudreau Lamarre-Male (2017, 2020).

The only obstructions to strong freeness are the fixed points in H.

The simplest case $P=\sum_{i} V_{i}+V_{i}^{*}$ treated in Harrow-Hastings (2009).

Related deterministic result in Bourgain-Gamburd (2012).

Irreducible representation

A rep of G is irreducible if it has no non-trivial stable subspace.

Irreducible rep ρ of \mathbb{U}_{n} are indexed by a signature : a pair of Young diagrams (λ, μ), two non-increasing sequences of integers $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant 0$ with length $|\rho|=\sum_{i} \lambda_{i}+\mu_{i} \leqslant n$.
$U \leftrightarrow((1), 0), \bar{U} \leftrightarrow(0,(1)), \operatorname{det}(U) \leftrightarrow((1, \ldots, 1), 0), \ldots$

Irreducible representation

Let $\left(U_{1}, \ldots, U_{d}\right)$ be iid Haar distributed on \mathbb{U}_{n} and ρ an irreducible representation. We set

$$
V_{i}=\rho\left(U_{i}\right) .
$$

Corollary
A.s. $\left(V_{1}, \ldots, V_{d}\right)$ are strongly asymptotically free as $n \rightarrow \infty$ and $1 \leqslant|\rho| \leqslant c \ln (n) / \ln \ln (n)$.

Indeed, ρ is a sub-representation of a tensor rep with $q=|\rho|$.

Result cannot hold for all rep : $\operatorname{det}(U)$ is one-dim and commutative.

Outline of proof

Analysis vs combinatorics

Strong asymptotic freeness results all relied on analysis : linearization, analytic properties of resolvent (Schwinger-Dyson - loop equation), complex analysis, interpolation methods.

In B-Collins (2019) results for random permutations rely on moments through new techniques.

For tensor products of Haar unitaries, we expand these techniques.

Strategy

1. Centering.
2. Linearization trick.
3. Matrix-valued nonbacktracking operators.
4. Fưredi-Komlós expected high trace method.
5. High order centered Weingarten calculus.

Centering

$\left(U_{1}, \ldots, U_{d}\right)$ iid Haar distributed on \mathbb{U}_{n} and

$$
V_{i}=U_{i}^{\otimes q_{+}} \otimes \bar{U}_{i}^{\otimes q_{-}} .
$$

$H=$ vector subspace of \mathbb{C}^{N} of fixed points of this tensor rep.

We want to prove the strong asymp freeness of $\left(V_{1}, \ldots, V_{d}\right)$ on H^{\perp}.

We have

$$
\mathbb{E} V_{i}=\operatorname{Proj}_{H} .
$$

We need to prove the strong asymp freeness of $\left(\left[V_{1}\right], \ldots,\left[V_{d}\right]\right)$ with

$$
\left[V_{i}\right]=V_{i}-\mathbb{E} V_{i}
$$

Linearization trick

Let $\left(v_{1}, \ldots, v_{d}\right)$ in a $\operatorname{NCPS}(\mathcal{A}, \tau)$ and $\left(V_{1}, \ldots, V_{d}\right)$ in $M_{N}(\mathbb{C})$. For $i=1, \ldots, d$, set $i^{*}=i+d, i^{* *}=i$,

$$
V_{i+d}=V_{i^{*}}=V_{i}^{*}, \quad v_{i+d}=v_{i^{*}}=v_{i}^{*} .
$$

Linearization trick

Let $\left(v_{1}, \ldots, v_{d}\right)$ in a $\operatorname{NCPS}(\mathcal{A}, \tau)$ and $\left(V_{1}, \ldots, V_{d}\right)$ in $M_{N}(\mathbb{C})$. For $i=1, \ldots, d$, set $i^{*}=i+d, i^{* *}=i$,

$$
V_{i+d}=V_{i^{*}}=V_{i}^{*}, \quad v_{i+d}=v_{i^{*}}=v_{i}^{*} .
$$

The convergence for all NC polynomials,

$$
\left\|P\left(V_{1}, \ldots, V_{2 d}\right)\right\| \rightarrow\left\|P\left(v_{1}, \ldots, v_{2 d}\right)\right\|
$$

is equivalent to : for all integers $r \geqslant 1$ and $a_{i} \in M_{r}(\mathbb{C}), a_{i^{*}}=a_{i}^{*}$,

$$
\left\|a_{0} \otimes I+\sum_{i=1}^{2 d} a_{i} \otimes V_{i}\right\| \rightarrow\left\|a_{0} \otimes 1+\sum_{i=1}^{2 d} a_{i} \otimes v_{i}\right\|
$$

It suffices to consider matrix-valued polynomials of degree one!

Matrix-valued nonbacktracking operators

Assume now that $\left(v_{1}, \ldots, v_{d}\right)$ are free unitaries and $V_{i} \in \mathbb{U}_{N}$, $a_{i} \in M_{r}(\mathbb{C})$,

$$
A=a_{0} \otimes I+\sum_{i=1}^{2 d} a_{i} \otimes V_{i}
$$

For $b_{i} \in M_{r}(\mathbb{C})$, set $E_{i j}=e_{i} \otimes e_{j} \in M_{2 d}(\mathbb{C})$ and

$$
B=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes V_{i} \otimes E_{i j} .
$$

The convergence of the spectral radii of all nonbactracking operators implies the convergence of the spectrum of A.

Nonbacktracking operators

$$
A=a_{0} \otimes I+\sum_{i} a_{i} \otimes V_{i} \quad \text { vs } \quad B=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes V_{i} \otimes E_{i j}
$$

On \mathbb{F}_{d}, powers of B follows geodesics : for $V_{i}=v_{i}=\lambda\left(g_{i}\right)$,

$$
B^{k} \phi \otimes \delta_{e} \otimes \delta_{j}=\sum_{g=\left(g_{i_{1}}, \ldots, g_{i_{k}}\right)} \phi_{g} \otimes \delta_{g} \otimes \delta_{i_{k}}
$$

with $\left(g_{i_{1}}, \ldots, g_{i_{k}}\right)$ reduced, $i_{l} \neq i_{l-1}^{*}, i_{0}=j$.

Expected high trace method

$$
B=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes\left[V_{i}\right] \otimes E_{i j}, \quad B_{\text {free }}=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes v_{i} \otimes E_{i j} .
$$

Goal : compare the spectral radii of B and $B_{\text {free }}$ for all values of $\left(b_{i}\right)$.

Expected high trace method

$$
B=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes\left[V_{i}\right] \otimes E_{i j}, \quad B_{\text {free }}=\sum_{(i, j): i \neq j^{*}} b_{i} \otimes v_{i} \otimes E_{i j} .
$$

Goal : compare the spectral radii of B and $B_{\text {free }}$ for all values of $\left(b_{i}\right)$.

For fixed $\left(b_{i}\right)$ and $k \gg \ln (N)$,

$$
\mathbb{E} \rho(B)^{2 k} \leqslant \mathbb{E}\left\|B^{k} B^{k *}\right\| \leqslant \mathbb{E} \operatorname{Tr}\left(B^{k} B^{k *}\right) \stackrel{?}{\leqslant} N(1+o(1))^{k} \rho\left(B_{\text {free }}\right)^{2 k} .
$$

We expand the trace as a sum of weighted paths, two ingredients :

- combinatoric of paths with the tensor structure of the V_{i} 's,
- average of product of $2 k$ entries of the V_{i} 's.

A final net argument to have a joint probabilistic estimate for all $\left(b_{i}\right)$.

Centered Weingarten Calculus

For a random variable X, define $[X]=X-\mathbb{E} X$.

Let $U \in \mathbb{O}_{n}$ Haar distributed. We want to compute an expression like

$$
\mathbb{E} \prod_{t=1}^{T}\left[\prod_{p=1}^{q} U_{i_{t, p} j_{t, p}}\right]
$$

in a meaningful way with $k=q T$ large.

Centered Weingarten Calculus

Wick calculus for Gaussian moments has an analog for unitary groups.

We can write a Weingarten formula

$$
\mathbb{E} \prod_{t=1}^{T}\left[\prod_{p=1}^{q} U_{i_{t p} j_{t p}}\right]=\sum_{\sigma, \tau} \delta_{\sigma}(i) \delta_{\tau}(j)[\mathrm{Wg}](\sigma, \tau),
$$

where the sum is over all pairs (σ, τ) of pairings of

$$
I=\{(t, p): 1 \leqslant t \leqslant T, 1 \leqslant p \leqslant q\}
$$

and $\delta_{\sigma}(i)$ is 1 if σ matches the same indices of i and 0 otherwise.

The expression of $[\mathrm{Wg}](\sigma, \tau)$ is complicated but expanding on
Collins-Matsumoto (2017) we have upper and lower bounds.

Haar unitary vs Gaussian

Let $G_{i j}$ be iid standard Gaussian variables.

Theorem
For $k=q T \leqslant n^{4 / 7}$,

$$
n^{k / 2}\left|\mathbb{E} \prod_{t=1}^{T}\left[\prod_{p=1}^{q} U_{i_{t p} j_{t p}}\right]\right| \leqslant(1+\delta) \mathbb{E} \prod_{t=1}^{T}\left(\left[\prod_{p=1}^{q} G_{i_{t p} j_{t p}}\right]+\eta\right),
$$

with $\delta=3 k^{7 / 2} n^{-2}$ and $\eta=2 k^{q} n^{-1 / 2}$.

The right-hand side can be estimated by using Wick calculus.

Concluding words

Further directions

Among open directions :

* non-asymptotic bounds (Bandeira-Boedihardjo-van Handel).
* tensor product of permutation matrices,
* random and deterministic unitary matrices,
* replace the free group by other non-amenable groups, such as surface groups (Magee, Naud, Puder) or free products of finite groups (Puder, Zimhoni).
\star what happens for n fixed and $q \rightarrow \infty$?

Simulation

For $\left(U_{1}, \ldots, U_{d}\right)$ iid Haar on $\mathbb{S U}_{n}$ and

$$
\sum_{i=1}^{d} U_{i}^{\otimes q}+U_{i}^{* \otimes q}
$$

Simulation

For $\left(U_{1}, \ldots, U_{d}\right)$ iid Haar on $\mathbb{S U}_{n}$ and

$$
\sum_{i=1}^{d} U_{i}^{\otimes q}+U_{i}^{* \otimes q}
$$

Thank you for your attention!

