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Representations in high dimension
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Unitary representation

Let G be a compact group and ρ be a unitary representation of G in
CN , that is, for g, h ∈ G,

ρ(g) ∈ UN , ρ(e) = IN and ρ(g · h) = ρ(g) · ρ(h).

For example, if G = Un, On or Sn :

? standard rep : N = n, ρ(U) = U ,

? determinant : N = 1, ρ(U) = det(U),

? tensor product : N = nq++q− , ρ(U) = U⊗q+ ⊗ Ū⊗q− .
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Representations in high dimension

We consider a sequence of representations ρN of growing dimensions.

Non-commutative probability offers a natural framework to describe
limits of representations of high dimensions, Biane (1995,1998).

Here, we explore a probabilistic direction and study the
representations by sampling group elements from the Haar measure.
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Non-commutative probability space

NCPS : pair formed by a unital algebra A and a linear functional
τ : A → C such that τ(1) = 1. E.g. A = MN (C), τ = 1

NTr.

A is a ?-algebra : it comes with a linear involution such that
(ab)∗ = b∗a∗ and τ(a∗) = τ(a).

Assume that τ(aa∗) > 0 with equality iff a = 0 (positive and faithful).

We may define the norms

‖a‖2 =
√
τ(aa∗) and ‖a‖ = sup{‖ab‖2 : ‖b‖2 6 1}.
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Non-commutative probability space

In this talk, only two examples of NCPS.

Matrices : A = MN (C), τ = 1
NTr and ‖·‖ is the operator norm.

Group algebra : G a countable group and A the algebra on `2(G)

generated by the left multiplication operators :

λ(g)(δh) = δgh.

That is, λ is the left regular representation. It is unitary.

For τ = 〈δe, · δe〉, ‖·‖ coincides with the operator norm on `2(G).
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Convergence in NC probability spaces

Let (v1,N , . . . , vd,N ) be elements of a NCPS (AN , τN ) and (v1, . . . , vd)

be elements of a NCPS (A, τ).

Convergence in NC distribution : for any NC polynomial P in d
variables and their adjoints,

τN (P (v1,N , . . . , vd,N ))→ τ (P (v1, . . . , vd)) .

E.g. P = v1v2− v2v1, P = v1 + v∗1 + v2 + v∗2 or P = (v1 + v2)(v1 + v2)∗.

Strong convergence : in addition,

‖P (v1,N , . . . , vd,N )‖ → ‖P (v1, . . . , vd)‖.

If (v1, . . . , vd) are free one speaks of (strong) asymptotic freeness.
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Free unitaries

Let Fd be the free group with d free generators g1, . . . , gd.

g2

g−12

g−11
g1

The unitary operators on `2(Fd), (λ(g1), . . . , λ(gd)) are free.
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Voiculescu’s freeness

Let (A, τ) be a NCPS.

Sub-algebras (A1, . . . ,Ad) are free if

τ(a1a2 · · · ak) = 0,

whenever τ(ai) = 0 and ai ∈ Ali , li 6= li+1.

Elements (v1, . . . , vd) are free if the subalgebras they span are free.

9



Convergence in NC probability spaces
Asymptotic freeness :

- iid GUE matrices, Voiculescu (1991),

- iid Haar distributed unitary matrices, Voiculescu (1998),

- iid uniform permutation matrices, Nica (1993) ,

- . . .

Strong asymptotic freeness :

- iid GUE matrices, Haagerup-Thorbjørnsen (2005), Schultz,

Capitaine-Donati, Male, Anderson, Collins-Guionnet-Parraud,

Bandeira-Boedihardjo-van Handel, . . .

- iid Haar distributed unitary matrices, Collins-Male (2012),

- iid uniform permutation matrices, B-Collins (2019),

- tensor product iid GUE matrices, Belinschi-Capitaine (2022).
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The quest of strong convergence

Strong convergence has always very powerful consequences :

? Ext(C∗
red(F2)) is not a group Haagerup-Thorbjørnsen (2005).

? The generalized Alon’s conjecture B-Collins (2019).

? Cut-off for finite space Markov chains B-Lacoin (2020).

? Hayes’ approach to Peterson-Thom conjecture
Belinschi-Capitaine (2022).

BUT : no known non-trivial deterministic examples and few random
examples.
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Representations in high dimension

Back to our setting : G a compact group and ρN a unitary rep on CN .

We consider U1, . . . , Ud be iid uniform sampled according to the Haar
measure on G and set

Vi,N = ρN (Ui) ∈ UN .

Question : along a sequence N →∞, convergence of (V1,N , . . . , Vd,N ) ?

In this talk : G = Un, On or Sn and (n,N) both go to infinity.
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Alternative motivation I :
Random representations of the free group

Consider the free group Fd with d free generators g1, . . . , gd.

We set
ρfreeN (gi) = Vi,N = ρN (Ui) ∈ UN .

It extends uniquely to a unitary representation of Fd on
ΓN = ρN (G) : ρfreeN (g1g2g

−1
1 ) = V1V2V1

∗. If ΓN is a subgroup of SN
one speaks of an action of Fd on {1, . . . , N}.

This random representation is uniform. How close is it to the regular
representation of Fd ?
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Alternative motivation II :
Optimal expander graphs

Construct strong finite dim approximations of operators like this one :

Courtesy of Ryan O’Donnell and Xinyu Wu
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Alternative motivation III :
Quantum expanders

For G = Un or On, in quantum info theory, the norm of operators like

d∑
i=1

Ui ⊗ Ūi + (Ui ⊗ Ūi)∗

appears Hastings, Harrow, Pisier.
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Strong asymptotic freeness for
representations of the unitary group
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Tensor product representation

Set G = Un and consider the rep on CN , with N = nq, q+ + q− = q,

V = U⊗q+ ⊗ Ū⊗q− .

If q− = q+, it has fixed points for all U ∈ Un. E.g. for Cn
2 'Mn(C),

(U ⊗ Ū)In = UInU
∗ = In.

We denote by H the vector subspace of CN of such fixed points (fully
explicit of dim(H) = q+!).
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Tensor product representation

Let (U1, . . . , Ud) be iid Haar distributed on Un and

Vi = U
⊗q+
i ⊗ Ū⊗q−i .

Theorem
Restricted to H⊥, a.s. (V1, . . . , Vd) are strongly asymptotically free as
n→∞ and q = q+ + q− 6 c ln(n)/ ln ln(n).

The same statement holds for On. Also, for Sn and q = 1, 2.
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Tensor product representation

Asymptotic freeness follows from Voiculescu (1998), Collins-Gaudreau
Lamarre-Male (2017, 2020).

The only obstructions to strong freeness are the fixed points in H.

The simplest case P =
∑
i Vi + V ∗i treated in Harrow-Hastings (2009).

Related deterministic result in Bourgain-Gamburd (2012).

19



Irreducible representation

A rep of G is irreducible if it has no non-trivial stable subspace.

Irreducible rep ρ of Un are indexed by a signature : a pair of Young
diagrams (λ, µ), two non-increasing sequences of integers
λ1 > λ2 > · · · > 0 with length |ρ| =

∑
i λi + µi 6 n.

U ↔ ((1), 0), Ū ↔ (0, (1)), det(U)↔ ((1, . . . , 1), 0), . . .
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Irreducible representation

Let (U1, . . . , Ud) be iid Haar distributed on Un and ρ an irreducible
representation. We set

Vi = ρ(Ui).

Corollary

A.s. (V1, . . . , Vd) are strongly asymptotically free as n→∞ and
1 6 |ρ| 6 c ln(n)/ ln ln(n).

Indeed, ρ is a sub-representation of a tensor rep with q = |ρ|.

Result cannot hold for all rep : det(U) is one-dim and commutative.
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Outline of proof
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Analysis vs combinatorics

Strong asymptotic freeness results all relied on analysis : linearization,
analytic properties of resolvent (Schwinger-Dyson - loop equation),
complex analysis, interpolation methods.

In B-Collins (2019) results for random permutations rely on moments
through new techniques.

For tensor products of Haar unitaries, we expand these techniques.
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Strategy

1. Centering.

2. Linearization trick.

3. Matrix-valued nonbacktracking operators.

4. Fűredi-Komlós expected high trace method.

5. High order centered Weingarten calculus.
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Centering
(U1, . . . , Ud) iid Haar distributed on Un and

Vi = U
⊗q+
i ⊗ Ū⊗q−i .

H = vector subspace of CN of fixed points of this tensor rep.

We want to prove the strong asymp freeness of (V1, . . . , Vd) on H⊥.

We have
EVi = ProjH .

We need to prove the strong asymp freeness of ([V1], . . . , [Vd]) with

[Vi] = Vi − EVi.
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Linearization trick
Let (v1, . . . , vd) in a NCPS (A, τ) and (V1, . . . , Vd) in MN (C). For
i = 1, . . . , d, set i∗ = i+ d, i∗∗ = i,

Vi+d = Vi∗ = V ∗i , vi+d = vi∗ = v∗i .

The convergence for all NC polynomials,

‖P (V1, . . . , V2d)‖ → ‖P (v1, . . . , v2d)‖

is equivalent to : for all integers r > 1 and ai ∈Mr(C), ai∗ = a∗i ,∥∥∥∥∥a0 ⊗ I +

2d∑
i=1

ai ⊗ Vi

∥∥∥∥∥→
∥∥∥∥∥a0 ⊗ 1 +

2d∑
i=1

ai ⊗ vi

∥∥∥∥∥ .
It suffices to consider matrix-valued polynomials of degree one !

Pisier (1996), Haagerup-Thorbjørnsen (2005)
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Matrix-valued nonbacktracking operators

Assume now that (v1, . . . , vd) are free unitaries and Vi ∈ UN ,
ai ∈Mr(C),

A = a0 ⊗ I +

2d∑
i=1

ai ⊗ Vi.

For bi ∈Mr(C), set Eij = ei ⊗ ej ∈M2d(C) and

B =
∑

(i,j):i 6=j∗
bi ⊗ Vi ⊗ Eij .

The convergence of the spectral radii of all nonbactracking operators
implies the convergence of the spectrum of A.
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Nonbacktracking operators

A = a0 ⊗ I +
∑
i

ai ⊗ Vi vs B =
∑

(i,j):i6=j∗
bi ⊗ Vi ⊗ Eij .

On Fd, powers of B follows geodesics : for Vi = vi = λ(gi),

Bkφ⊗ δe ⊗ δj =
∑

g=(gi1 ,...,gik )

φg ⊗ δg ⊗ δik ,

with (gi1 , . . . , gik) reduced, il 6= i∗l−1, i0 = j.

g2

g−12

g−11
g1
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Expected high trace method

B =
∑

(i,j):i 6=j∗
bi ⊗ [Vi]⊗ Eij , Bfree =

∑
(i,j):i6=j∗

bi ⊗ vi ⊗ Eij .

Goal : compare the spectral radii of B and Bfree for all values of (bi).

For fixed (bi) and k � ln(N),

Eρ(B)2k 6 E‖BkBk∗‖ 6 ETr(BkBk∗)
?
6 N(1 + o(1))kρ(Bfree)

2k.

We expand the trace as a sum of weighted paths, two ingredients :

- combinatoric of paths with the tensor structure of the Vi’s,

- average of product of 2k entries of the Vi’s.

A final net argument to have a joint probabilistic estimate for all (bi).

29



Expected high trace method

B =
∑

(i,j):i 6=j∗
bi ⊗ [Vi]⊗ Eij , Bfree =

∑
(i,j):i6=j∗

bi ⊗ vi ⊗ Eij .

Goal : compare the spectral radii of B and Bfree for all values of (bi).

For fixed (bi) and k � ln(N),

Eρ(B)2k 6 E‖BkBk∗‖ 6 ETr(BkBk∗)
?
6 N(1 + o(1))kρ(Bfree)

2k.

We expand the trace as a sum of weighted paths, two ingredients :

- combinatoric of paths with the tensor structure of the Vi’s,

- average of product of 2k entries of the Vi’s.

A final net argument to have a joint probabilistic estimate for all (bi).

29



Centered Weingarten Calculus

For a random variable X, define [X] = X − EX.

Let U ∈ On Haar distributed. We want to compute an expression like

E
T∏
t=1

[
q∏
p=1

Uit,pjt,p

]

in a meaningful way with k = qT large.

30



Centered Weingarten Calculus

Wick calculus for Gaussian moments has an analog for unitary groups.

We can write a Weingarten formula

E
T∏
t=1

[
q∏
p=1

Uitpjtp

]
=
∑
σ,τ

δσ(i)δτ (j)[Wg](σ, τ),

where the sum is over all pairs (σ, τ) of pairings of

I = {(t, p) : 1 6 t 6 T, 1 6 p 6 q},

and δσ(i) is 1 if σ matches the same indices of i and 0 otherwise.

The expression of [Wg](σ, τ) is complicated but expanding on
Collins-Matsumoto (2017) we have upper and lower bounds.
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Haar unitary vs Gaussian

Let Gij be iid standard Gaussian variables.

Theorem
For k = qT 6 n4/7,

nk/2

∣∣∣∣∣E
T∏
t=1

[
q∏
p=1

Uitpjtp

]∣∣∣∣∣ 6 (1 + δ)E
T∏
t=1

([
q∏
p=1

Gitpjtp

]
+ η

)
,

with δ = 3k7/2n−2 and η = 2kqn−1/2.

The right-hand side can be estimated by using Wick calculus.
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Concluding words
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Further directions

Among open directions :

? non-asymptotic bounds (Bandeira-Boedihardjo-van Handel).

? tensor product of permutation matrices,

? random and deterministic unitary matrices,

? replace the free group by other non-amenable groups, such as
surface groups (Magee, Naud, Puder) or free products of finite
groups (Puder, Zimhoni).

? what happens for n fixed and q →∞ ?
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Simulation

For (U1, . . . , Ud) iid Haar on SUn and

d∑
i=1

U⊗qi + U∗i
⊗q.
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Thank you for your attention !
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