Spherical convex hull of random points on a wedge

Elisabeth M. Werner

Case Western Reserve University
and

Caroline Herschel Guest Professor, Ruhr Universität Bochum

supported by a grant from the National Science Foundation
I. The classical random point model

$K \subset \mathbb{R}^d$ is a fixed convex body

$(X_i)_{i \geq 1}$ be a sequence of independent random points uniformly distributed in K
Construction of random polytopes

I. The classical random point model

$K \subset \mathbb{R}^d$ is a fixed convex body

$(X_i)_{i \geq 1}$ be a sequence of independent random points uniformly distributed in K

For $n \geq d + 1$, let

$$K_n := [X_1, \ldots, X_n]$$

be the convex hull of the random points X_1, \ldots, X_n: random polytope
Construction of random polytopes

I. The classical random point model

$K \subset \mathbb{R}^d$ is a fixed convex body

$(X_i)_{i \geq 1}$ be a sequence of independent random points uniformly distributed in K

For $n \geq d + 1$, let

$$K_n := [X_1, \ldots, X_n]$$

be the convex hull of the random points X_1, \ldots, X_n : random polytope

K_n is an approximation of the set K as $n \to \infty$

Random variables connected to the random polytopes K_n
I. The classical random point model

\(K \subset \mathbb{R}^d \) is a fixed convex body

\((X_i)_{i \geq 1}\) be a sequence of independent random points uniformly distributed in \(K \)

For \(n \geq d + 1 \), let

\[K_n := [X_1, \ldots, X_n] \]

be the convex hull of the random points \(X_1, \ldots, X_n \): random polytope

\(K_n \) is an approximation of the set \(K \) as \(n \to \infty \)

Random variables connected to the random polytopes \(K_n \)

- the volume \(V_d(K_n) \) of \(K_n \), or, more generally
 \(V_k(K_n), k = 0, 1, \ldots, d \), the \(k-th \) intrinsic volume of \(K_n \)
Construction of random polytopes

I. The classical random point model

$K \subset \mathbb{R}^d$ is a fixed convex body

$(X_i)_{i \geq 1}$ be a sequence of independent random points uniformly distributed in K

For $n \geq d + 1$, let

$$K_n := [X_1, \ldots, X_n]$$

be the convex hull of the random points X_1, \ldots, X_n : random polytope

K_n is an approximation of the set K as $n \to \infty$

Random variables connected to the random polytopes K_n

- the volume $V_d(K_n)$ of K_n, or, more generally $V_k(K_n), k = 0, 1, \ldots, d$, the k-th intrinsic volume of K_n
- the number $f_{d-1}(K_n)$ of facets of K_n, and, more generally the number $f_k(K_n)$ of k-dimensional faces of $K_n, k = \{0, 1, \ldots, d - 1\}$
II. The Poisson point process model

K is a fixed convex body $K \subset \mathbb{R}^d$

η_γ is a Poisson point process in \mathbb{R}^d with intensity measure

$\gamma \lambda, \quad \gamma > 0$

λ is the Lebesgue measure, restricted to K
II. The Poisson point process model

K is a fixed convex body $K \subset \mathbb{R}^d$

η_γ is a Poisson point process in \mathbb{R}^d with intensity measure

$$\gamma \lambda, \quad \gamma > 0$$

λ is the Lebesgue measure, restricted to K

Poisson random polytope K_{η_γ} is the convex hull of the Poisson point process η_γ
II. The Poisson point process model

K is a fixed convex body $K \subset \mathbb{R}^d$

η_γ is a Poisson point process in \mathbb{R}^d with intensity measure

$$\gamma \lambda, \quad \gamma > 0$$

λ is the Lebesgue measure, restricted to K

Poisson random polytope K_{η_γ} is the convex hull of the Poisson point process η_γ

Note: the expected number of points of η_γ equals $\gamma V_d(K)$

\Rightarrow

for a Poisson random polytope:

$\gamma V_d(K)$ plays the same role as n for the classical random polytopes
We will look at the expected number of k-dimensional faces of K_n

$$\mathbb{E} f_k(K_n) \quad \text{as } n \to \infty$$
We will look at the **expected number of** \(k \)-**dimensional faces of** \(K_n \)

\[\mathbb{E} f_k(K_n) \quad \text{as} \quad n \to \infty \]

The behavior depends on the geometry of the underlying convex body \(K \)
I. Euclidean space

- If K is C_+^2, then
 \[E f_k(K_n) \sim c_{d,k} \text{ as } (K) n^{d-1/d+1} \text{ as } n \to \infty \]

- $c_{d,k}$ is a constant only depending on d and on k and
I. Euclidean space

- If K is C^2, then

$$E f_k(K_n) \sim c_{d,k} \alpha_s(K) n^{d-1 \over d+1} \quad \text{as } n \to \infty$$

(1)

- $c_{d,k}$ is a constant only depending on d and on k and
- $\alpha_s(K) = \int_{\partial K} \kappa(K, x)^{1/(d+1)} \, dx$ is the affine surface area of K
- $\kappa(K, x)$ is the Gauss curvature at $x \in \partial K$
I. Euclidean space

- If K is C^2, then

$$E f_k(K_n) \sim c_{d,k} a s(K) n^{d-1 \over d+1} \quad \text{as } n \to \infty \quad (1)$$

- $c_{d,k}$ is a constant only depending on d and on k and
- $a s(K) = \int_{\partial K} \kappa(K, x)^{1/(d+1)} \, dx$ is the affine surface area of K
- $\kappa(K, x)$ is the Gauss curvature at $x \in \partial K$
- (1) was proved, depending on k, by Bárány, Schütt, Reitzner, Wieacker
• If $K = P$ is a d-dimensional polytope, then

$$\mathbb{E}f_k(K_n) \sim \hat{c}_{d,k} \text{flag}(P) (\log n)^{d-1} \quad \text{as } n \to \infty$$ \hspace{1cm} (2)

• $\hat{c}_{d,k}$ is another constant only depending on d and on k
If $K = P$ is a d-dimensional polytope, then
\[\mathbb{E}f_k(K_n) \sim \hat{c}_{d,k} \text{flag}(P) (\log n)^{d-1}\]
as $n \to \infty$ (2)

- $\hat{c}_{d,k}$ is another constant only depending on d and on k
- $\text{flag}(P)$ is the number of flags of P: an n-tupel
\[F_0 \subset F_1 \subset \ldots \subset F_{d-1}\]
where F_i, $0 \leq i \leq d - 1$, is an i-dimensional face of P
If $K = P$ is a d-dimensional polytope, then

$$\mathbb{E}f_k(K_n) \sim \hat{c}_{d,k} \mathrm{flag}(P)(\log n)^{d-1} \quad \text{as } n \to \infty$$

(2)

- $\hat{c}_{d,k}$ is another constant only depending on d and on k
- $\mathrm{flag}(P)$ is the number of flags of P: an n-tupel

$$F_0 \subset F_1 \subset \ldots \subset F_{d-1}$$

where F_i, $0 \leq i \leq d - 1$, is an i-dimensional face of P

(2) was proved by

- Rényi and Sulanke for $d = 2$
- Bárány and Buchta for general d and $k = 0, d - 1$
- Reitzner for general d and k
II. Spherical space

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} and

$$S_+^d := \mathbb{S}^d \cap \{x_{d+1} \geq 0\} \subset \mathbb{R}^{d+1}$$

be the d-dimensional upper halfsphere.
II. Spherical space

Let S^d denote the unit sphere in \mathbb{R}^{d+1} and

$$S^d_+ := S^d \cap \{x_{d+1} \geq 0\} \subset \mathbb{R}^{d+1}$$

be the d-dimensional upper halfsphere.

A set $K \subset S^d \cap \{x_{d+1} > 0\}$ is a spherical convex body, if it is closed, and its positive hull

$$\text{pos } K = \{\lambda x : x \in K, \lambda \geq 0\}$$

is a convex set in \mathbb{R}^{d+1}.
II. Spherical space

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} and

$$\mathbb{S}^d_+ := \mathbb{S}^d \cap \{x_{d+1} \geq 0\} \subset \mathbb{R}^{d+1}$$

be the d-dimensional upper halfsphere

A set $K \subset \mathbb{S}^d \cap \{x_{d+1} > 0\}$ is a spherical convex body, if it is closed, and its positive hull

$$\text{pos } K = \{\lambda x : x \in K, \lambda \geq 0\}$$

is a convex set in \mathbb{R}^{d+1}

σ_d denotes the spherical volume, i.e., the d-dimensional Hausdorff measure on \mathbb{S}^d

We consider random polytopes that are the spherical convex hull of points chosen uniformly according to $\frac{\sigma_d}{\sigma_d(K)}$ in K
• Analogue to (1)

Theorem (Besau, Ludwig, W)

Let $K \subset S^d_+$ be a spherical convex body. If K_n is the spherical convex hull of n random points chosen uniformly in K, then

$$
\lim_{n \to \infty} \mathbb{E} f_0(K_n) n^{-\frac{d-1}{d+1}} = \beta_d \ vol_d(K)^{-\frac{d-1}{d+1}} \int_{\partial K} \kappa_{S^d}(K, x)^{\frac{1}{d+1}} \ dx
$$

• $\beta_d = \frac{(d^2+d+2)(d^2+1)}{2(d+3)(d+1)!} \Gamma\left(\frac{d^2+1}{d+1}\right) \left(\frac{d+1}{|B^d_{d-1}|}\right)^{\frac{2}{d+1}}$

• $\kappa_{S^d}(K, x)$ is the spherical Gauss-Kronecker curvature
Sketch of Proof

The gnomonic projection \(g : \mathbb{S}^d_+ \to \mathbb{R}^d \) is defined by

\[
g(x) = \tilde{x} = \frac{x}{x \cdot e_{d+1}} - e_{d+1},
\]

We identify \(\mathbb{R}^d \) with \(\{ x \in \mathbb{R}^{d+1} : x \cdot e_{d+1} = 0 \} \)
Sketch of Proof

The gnomonic projection $g : \mathbb{S}^d_+ \to \mathbb{R}^d$ is defined by

$$g(x) = \bar{x} = \frac{x}{x \cdot e_{d+1}} - e_{d+1},$$

We identify \mathbb{R}^d with $\{x \in \mathbb{R}^{d+1} : x \cdot e_{d+1} = 0\}$

- $\bar{K} = g(K)$ is a convex body in \mathbb{R}^d
Sketch of Proof

The gnomonic projection \(g : \mathbb{S}^d_+ \rightarrow \mathbb{R}^d \) is defined by

\[
g(x) = \tilde{x} = \frac{x}{x \cdot e_{d+1}} - e_{d+1},
\]

We identify \(\mathbb{R}^d \) with \(\{ x \in \mathbb{R}^{d+1} : x \cdot e_{d+1} = 0 \} \)

- \(\tilde{K} = g(K) \) is a convex body in \(\mathbb{R}^d \)
- The pushforward of the measure \(\sigma_d \) under \(g \) is the measure \(d\Phi = \psi \, d\bar{x} \) with density

\[
\psi(\bar{x}) = \frac{1}{(1 + \|ar{x}\|^2)^{(d+1)/2}}
\]
Sketch of Proof

The gnomonic projection $g : \mathbb{S}^d_+ \rightarrow \mathbb{R}^d$ is defined by

$$g(x) = \bar{x} = \frac{x}{x \cdot e_{d+1}} - e_{d+1},$$

We identify \mathbb{R}^d with $\{x \in \mathbb{R}^{d+1} : x \cdot e_{d+1} = 0\}$

- $\bar{K} = g(K)$ is a convex body in \mathbb{R}^d
- The pushforward of the measure σ_d under g is the measure $d\Phi = \psi d\bar{x}$ with density

$$\psi(\bar{x}) = \frac{1}{(1 + \|\bar{x}\|^2)^{(d+1)/2}}$$

Choosing n points in K with respect to $\frac{\sigma_d}{\sigma_d(K)}$ corresponds to choosing n points in \bar{K} with respect to

$$\frac{\psi(\bar{x})}{\int_{\bar{K}} \psi(\bar{x}) d\bar{x}},$$

i.e.,

$$g(K_n) = (g(K))_n^\Phi = (\bar{K})_n^\Phi$$
We use a result by Böröczky, Fodor and Hug:

- \(L \) be a convex body in \(\mathbb{R}^d \)
- \(\phi : L \rightarrow (0, \infty) \) is a continuous probability density
- the random polytope \(L_n^\Phi \) is the convex hull of \(n \) independent random points chosen in \(L \) according to the probability measure \(\Phi \)

\[
\lim_{n \to \infty} \mathbb{E} f_0(L_n^\Phi) n^{-\frac{d-1}{d+1}} = \beta_d \int_{\partial L} \kappa(L, x) \frac{1}{d+1} \phi(x) \frac{d-1}{d+1} dx,
\]

where \(\beta_d \) is as above

As \(n \to \infty \), with \(\Phi(\bar{x}) = \frac{\psi(\bar{x}) d\bar{x}}{\int_{\bar{K}} \psi(\bar{x}) d\bar{x}} \)

\[
\mathbb{E} f_0(K_n) n^{-\frac{d-1}{d+1}} = \mathbb{E} f_0 \left((\bar{K})_n^\Phi \right) n^{-\frac{d-1}{d+1}}
\]

\[
\sim \frac{\beta_d}{\left(\int_{\bar{K}} \psi(\bar{x}) d\bar{x} \right)^{\frac{d-1}{d+1}}} \int_{\partial \bar{K}} \kappa(\bar{K}, \bar{x}) \frac{1}{d+1} \psi(\bar{x}) \frac{d-1}{d+1} d\bar{x}
\]
As $n \to \infty$,

$$
\mathbb{E} f_0(K_n) n^{-\frac{d-1}{d+1}} \sim \frac{\beta_d}{\left(\int_{\bar{K}} \psi(\bar{x}) \, d\bar{x} \right)^{\frac{d-1}{d+1}}} \int_{\partial \bar{K}} \kappa(\bar{K}, \bar{x}) \frac{1}{d+1} \psi(\bar{x}) \frac{d-1}{d+1} \, d\bar{x}
$$
As $n \to \infty$,

$$\mathbb{E} f_0(K_n) \sim n^{-\frac{d-1}{d+1}} \beta_d \left(\int_{\bar{K}} \psi(\bar{x}) d\bar{x} \right)^{d-1 \over d+1} \int_{\partial \bar{K}} \kappa(\bar{K}, \bar{x}) \frac{1}{d+1} \psi(\bar{x}) \frac{d-1}{d+1} d\bar{x}$$

$$\kappa^{d} (K, x) = \kappa(\bar{K}, \bar{x}) \left(\frac{1 + \|\bar{x}\|^2}{1 + (\bar{x} \cdot N_{\bar{K}}(\bar{x}))^2} \right)^{\frac{d+1}{2}}$$
As \(n \to \infty \),

\[
\mathbb{E} f_0(K_n) n^{-\frac{d-1}{d+1}} \sim \frac{\beta_d}{\left(\int_{\bar{K}} \psi(\bar{x}) \, d\bar{x} \right)^{\frac{d-1}{d+1}}} \int_{\partial \bar{K}} \kappa(\bar{K}, \bar{x}) \frac{1}{d+1} \psi(\bar{x})^{\frac{d-1}{d+1}} \, d\bar{x}
\]

- \(\kappa_{S^d}(K, x) = \kappa(\bar{K}, \bar{x}) \left(\frac{1+\|\bar{x}\|^2}{1+(\bar{x} \cdot N_{\bar{K}}(\bar{x}))^2} \right)^{\frac{d+1}{2}} \)
- the Jacobian on \(\partial \bar{K} \) of \(g^{-1} \)

\[
J_{\partial \bar{K}} g^{-1}(\bar{x}) = \left(\frac{1 + (\bar{x} \cdot N_{\bar{K}}(\bar{x}))^2}{1 + \|\bar{x}\|^2} \right)^{\frac{d}{2}}
\]
As \(n \to \infty \),
\[
\mathbb{E}f_0(K_n) n^{-\frac{d-1}{d+1}} \sim \frac{\beta_d}{(\int_{\bar{K}} \psi(\bar{x}) \, d\bar{x})^{\frac{d-1}{d+1}}} \int_{\partial \tilde{K}} \kappa(\tilde{K}, \bar{x}) \frac{1}{d+1} \psi(\bar{x})^{\frac{d-1}{d+1}} \, d\bar{x}
\]

- \(\kappa^{S^d}(K, x) = \kappa(\tilde{K}, \bar{x}) \left(\frac{1 + \|\bar{x}\|^2}{1 + (\bar{x} \cdot N_{\tilde{K}}(\bar{x}))^2} \right)^{\frac{d+1}{2}} \)

- the Jacobian on \(\partial \tilde{K} \) of \(g^{-1} \)
\[
J_{\partial \tilde{K}} g^{-1}(\bar{x}) = \left(1 + (\bar{x} \cdot N_{\tilde{K}}(\bar{x}))^2 \right)^{\frac{1}{2}}
\]
\[
(1 + \|\bar{x}\|^2)^{\frac{d}{2}}
\]

- the Jacobian on \(\tilde{K} \) of \(g^{-1} \) is
\[
J_{\tilde{K}} g^{-1}(\bar{x}) = \left(1 + \|\bar{x}\|^2 \right)^{-\frac{d+1}{2}}
\]
Let \((X_i)_{i \geq 1}\) be a sequence of independent random points uniformly distributed on
\[S^d_+ := S^d \cap \{x_{d+1} \geq 0\} \subset \mathbb{R}^{d+1} \]
Let \((X_i)_{i \geq 1}\) be a sequence of independent random points uniformly distributed on \(S^d_+ := S^d \cap \{x_{d+1} \geq 0\} \subset \mathbb{R}^{d+1}\)

For \(n \geq d + 1\), let

\[
K_{n}^{(s)} : = [X_1, \ldots, X_n]_{S^d} \\
= \text{pos}(X_1, \ldots, X_n) \cap S^d
\]

be the spherical convex hull of the random points \(X_1, \ldots, X_n\)

\[
\text{pos}(X_1, \ldots, X_n) := \{\lambda_1 X_1 + \ldots + \lambda_n X_n : \lambda_1, \ldots, \lambda_n \geq 0\} \subset \mathbb{R}^{d+1}
\]
Theorem (Bárány, Hug, Reitzner, Schneider $k \in \{0, d - 1\}$; Kabluchko, Marynych, Temesvari, Thäle, general k)

\[
\lim_{n \to \infty} \mathbb{E} f_k(K_n^{(s)}) = \tilde{c}_{d,k},
\]

where $\tilde{c}_{d,k}$ is a constant only depending on d and k
Theorem \((\text{Bárány, Hug, Reitzner, Schneider } k \in \{0, d - 1\}; \ \text{Kabluchko, Marynych,Temesvari, Thäle, general } k) \)

\[
\lim_{n \to \infty} \mathbb{E} f_k(K_n^{(s)}) = \tilde{c}_{d,k},
\]

where \(\tilde{c}_{d,k} \) is a constant only depending on \(d \) and \(k \)

- Special case of an analogue to (2)

We view \(S^d_+ \) as a \text{spherical convex polytope} with a single facet and no other boundary structure.
Theorem (Bárány, Hug, Reitzner, Schneider $k \in \{0, d-1\}$; Kabluchko, Marynych, Temesvari, Thäle, general k)

\[
limit_{n \to \infty} \mathbb{E} f_k(K_n^{(s)}) = \tilde{c}_{d,k},
\]

where $\tilde{c}_{d,k}$ is a constant only depending on d and k

• Special case of an analogue to (2)

We view S^d_+ as a spherical convex polytope with a single facet and no other boundary structure

Applying the gnomonic projection g

• to the “spherical convex polytope” S^d_+, \mathbb{R}^d can be seen as a d-dimensional convex “unbounded polytope” with a single facet at ∞
\textbf{Theorem} (Bárány, Hug, Reitzner, Schneider \(k \in \{0, d - 1\}\); Kabluchko, Marynych, Temesvari, Thäle, general \(k\))

\[\lim_{n \to \infty} \mathbb{E} f_k(K_n^{(s)}) = \tilde{c}_{d,k}, \]

where \(\tilde{c}_{d,k}\) is a constant only depending on \(d\) and \(k\)

- Special case of an analogue to (2)

We view \(\mathbb{S}^d_+\) as a \textit{spherical convex polytope} with a single facet and no other boundary structure.

Applying the gnomonic projection \(g\)

- to the “spherical convex polytope” \(\mathbb{S}^d_+, \mathbb{R}^d\) can be seen as a \(d\)-dimensional convex “unbounded polytope” with a single facet at \(\infty\)
- \(K_n^{(s)}\) is identified with the convex hull of \(n\) random points chosen w. r. to the normalized pushforward of \(\sigma_d, \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi \frac{d+1}{2}} \psi(\bar{x}) d\bar{x} = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi \frac{d+1}{2}} \frac{d\bar{x}}{(1+||\bar{x}||^2)^{(d+1)/2}}\)
Compare behavior of **bounded** polytopes in \mathbb{R}^d with the ‘**unbounded polytope**’ we ask:

Are there models for random polytopes that interpolate for $\mathbb{E} f_k(K_n)$ between the behavior of

\[
\hat{c}_{d,k} \text{ flag}(P)(\log n)^{d-1} \quad \text{and} \quad \tilde{c}_{d,k}
\]
Compare behavior of \textbf{bounded} polytopes in \mathbb{R}^d with the \textit{‘unbounded polytope’} we ask:

\textit{Are there models for random polytopes that interpolate for $\mathbb{E}f_k(K_n)$ between the behavior of}

$$\hat{c}_{d,k} \text{ flag}(P)(\log n)^{d-1} \quad \text{and} \quad \tilde{c}_{d,k}$$

\textbullet \quad \text{We will look at } k = d - 1
SETTING

Let \(j \in \{1, \ldots, d\} \)
Let \(H_1, \ldots, H_j \) be distinct hyperplanes passing through the origin of \(\mathbb{R}^{d+1} \)
Let \(S^d_{j,+} := S^d \cap H_1^+ \cap \ldots \cap H_j^+ \),
\(H_i^+ \) is the positive halfspace, bounded by the hyperplane \(H_i, i \in \{1, \ldots, j\} \)
- \(S^d_{j,+} \) is a \(d \)-dimensional spherical convex subset of \(S^d \)
- its shape is determined by the angles between \(H_1, \ldots, H_j \)
SETTING

Let \(j \in \{1, \ldots, d\} \)

Let \(H_1, \ldots, H_j \) be distinct hyperplanes passing through the origin of \(\mathbb{R}^{d+1} \)

Let

\[
S_{d,j,+}^d := S^d \cap H_1^+ \cap \ldots \cap H_j^+,
\]

\(H_i^+ \) is the positive halfspace, bounded by the hyperplane \(H_i, i \in \{1, \ldots, j\} \)

- \(S_{d,j,+}^d \) is a \(d \)-dimensional spherical convex subset of \(S^d \)
- its shape is determined by the angles between \(H_1, \ldots, H_j \)

Let \((X_i)_{i \geq 1} \) be independent random points uniformly distributed on \(S_{d,j,+}^d \)

For \(n \geq d + 1 \), let \(K_n^{(s,j)} \) be the spherical convex hull of \(X_1, \ldots, X_n \)
Conjecture. For $j \in \{1, \ldots, d\}$ one has that
\[
\mathbb{E} f_{d-1}(K_n^{(s,j)}) \sim c_{d,j} (\log n)^{j-1} \quad \text{as } n \to \infty
\]

where $c_{d,j}$ are constants that depend only on d and j.
Conjecture. For \(j \in \{1, \ldots, d\} \) one has that
\[
\mathbb{E}f_{d-1}(K_n^{(s,j)}) \sim c_{d,j} (\log n)^{-1} \quad \text{as } n \to \infty
\]
where \(c_{d,j} \) are constants that depend only on \(d \) and \(j \).

In particular, we conjecture
- the first-order asymptotic expansion does not depend on the angles between \(H_1, \ldots, H_j \)
- the error terms depend on the angles between the hyperplanes \(H_1, \cdots, H_j \)
Conjecture. For $j \in \{1, \ldots, d\}$ one has that

$$\mathbb{E} f_{d-1}(K_n^{(s,j)}) \sim c_{d,j} (\log n)^{j-1} \quad \text{as } n \to \infty$$

where $c_{d,j}$ are constants that depend only on d and j.

In particular, we conjecture

- the first-order asymptotic expansion does not depend on the angles between H_1, \ldots, H_j
- the error terms depend on the angles between the hyperplanes H_1, \ldots, H_j

We prove the conjecture in the case $j = 2$ and under the assumption that the angle $\alpha(H_1, H_2)$ between the hyperplanes H_1 and H_2 is a right angle.

We call the set \mathbb{S}_2^d a spherical wedge.
Figure: The upper panel shows a random spherical polygon in the spherical wedge of dimension two. The same random spherical polygon is shown in the lower panel after gnomonic projection in the center of the spherical wedge.
Main Theorem

Theorem (Besau, Gusakova, Reitzner, Schütt, Thäle, W)

Let $K = S^d_{2, +}$ and suppose that $\alpha(H_1, H_2) = \frac{\pi}{2}$. Then there exists a constant $c_{d,2} > 0$ only depending on the dimension d such that

$$E f_{d-1}(K_n^{(s,2)}) \sim c_{d,2} (\log n) \quad \text{as } n \to \infty$$
Theorem (Besau, Gusakova, Reitzner, Schütt, Thäle, W)

Let $K = \mathbb{S}^d_{2,+}$ and suppose that $\alpha(H_1, H_2) = \frac{\pi}{2}$. Then there exists a constant $c_{d,2} > 0$ only depending on the dimension d such that

$$
\mathbb{E}f_{d-1}(K_n^{(s,2)}) \sim c_{d,2} (\log n) \quad \text{as } n \to \infty
$$

Remarks

- $c_{d,2} = \frac{2^{d-1}}{d} |\partial B^d_2| A_d, \quad c_{2,2} = \frac{4}{3}$
Main Theorem

Theorem (Besau, Gusakova, Reitzner, Schütt, Thäle, W)

Let $K = \mathbb{S}_2^d$, and suppose that $\alpha(H_1, H_2) = \frac{\pi}{2}$. Then there exists a constant $c_{d,2} > 0$ only depending on the dimension d such that

$$\mathbb{E} f_{d-1}(K_n^{(s,2)}) \sim c_{d,2} (\log n) \quad \text{as } n \to \infty$$

Remarks

- $c_{d,2} = \frac{2^{d-1}}{d} |\partial B_2^d| A_d$, \quad $c_{2,2} = \frac{4}{3}$

- In dimension 2: $\mathbb{E} f_1(K_n^{(s,2)}) \sim \frac{4}{3} (\log n) \quad \text{as } n \to \infty$
in dimension 2: \(\mathbb{E} f_1(K_n^{(s,2)}) \sim \frac{4}{3} (\log n) \) as \(n \to \infty \)

Let \(K_n^{(\ell)} \) be the convex hull of \(n \) independent and uniform random points in a planar polygon with \(\ell \geq 3 \) edges

- Rényi and Sulanke: \(\mathbb{E} f_1(K_n^{(\ell)}) \sim \frac{2\ell}{3} (\log n) \) as \(n \to \infty \)
Steps of the proof

\[\mathbb{E} f_{d-1}(K_n^{(s,2)}) = \mathbb{E} \sum_{1 \leq i_1 < \cdots < i_d \leq n} \mathbf{1}\{x_{i_1}, \ldots, x_{i_d} \text{ generate a facet of } K_n^{(s,2)}\} \]

\[= \binom{n}{d} \int_{S_2^d,+} \cdots \int_{S_2^d,+} \mathbb{P}(x_1, \ldots, x_d \text{ generate a facet of } K_n^{(s,2)}) \frac{\sigma_d(dx_1)}{\sigma_d(S_2^d,+)} \cdots \frac{\sigma_d(dx_d)}{\sigma_d(S_2^d,+)} \]
\[\mathbb{E} f_{d-1}(K_n^{(s,2)}) = \binom{n}{d} \int_{S_{2,+}^d} \cdots \int_{S_{2,+}^d} \mathbb{P} \left(x_1, \cdots, x_d \text{ generate a facet of } K_n^{(s,2)} \right) \frac{\sigma_d(dx_1)}{\sigma_d(S_{2,+}^d)} \cdots \frac{\sigma_d(dx_d)}{\sigma_d(S_{2,+}^d)} \]
\[E f_{d-1}(K_n^{(s,2)}) = \binom{n}{d} \int_{S^d_{2,+}} \cdots \int_{S^d_{2,+}} \mathbb{P}(x_1, \ldots, x_d \text{ generate a facet of } K_n^{(s,2)}) \frac{\sigma_d(dx_1)}{\sigma_d(S^d_{2,+})} \cdots \frac{\sigma_d(dx_d)}{\sigma_d(S^d_{2,+})} \]

Spherical Blaschke-Petkantschin Formula [Bárány, Hug, Reitzner, Schneider]

\[
\int_{S^d} \cdots \int_{S^d} f(x_1, \ldots, x_d) \sigma_d(dx_1) \cdots \sigma_d(dx_d) = \frac{\omega_{d+1}}{2} \times \\
\int_{G(d+1,d)} \left[\int_{S^d \cap H} \cdots \int_{S^d \cap H} f(x_1, \ldots, x_d) \times \nabla_d(x_1, \ldots, x_d) \sigma_{d-1}(dx_1) \cdots \sigma_{d-1}(dx_d) \right] \nu_d(dH)
\]

- \(f : S^d \to \mathbb{R} \) is a Borel measurable function, \(\omega_{d+1} = \sigma_d(S^d) \)
- \(G(d+1,d) \) is the Grassmannian of \(d \)-dimensional linear subspaces of \(\mathbb{R}^{d+1} \) with the rotation invariant Haar probability measure \(\nu_d \)
- \(\nabla_d(x_1, \ldots, x_d) \) is the Euclidean volume of the \(d \)-dimensional parallelotope spanned by \(x_1, \ldots, x_d \)
\(P(x_1, \cdots, x_d \text{ generate a facet of } K_n^{(s,2)}) \) happens if:

- \(d \) points \(x_1 \cdots x_d \) are chosen in \(S_{2,+}^d \cap H \)
- \(n - d \) points are chosen in either \(S_{2,+}^d \cap H^+ \) or \(S_{2,+}^d \cap H^- \)

\[
\rightarrow \left(\frac{\sigma_d(S_{2,+}^d \cap H^+)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} + \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d}
\]
\(\mathbb{P}(x_1, \cdots, x_d \text{ generate a facet of } K_n^{(s,2)}) \) happens if:

- \(d \) points \(x_1 \cdots x_d \) are chosen in \(S_{2,+}^d \cap H \)
- \(n - d \) points are chosen in either \(S_{2,+}^d \cap H^+ \) or \(S_{2,+}^d \cap H^- \)

\[
\rightarrow \left(\frac{\sigma_d(S_{2,+}^d \cap H^+)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} + \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d}
\]

\[
\mathbb{E} f_{d-1}(K_n^{(s,2)}) = \frac{\omega_{d+1}}{2\sigma_d(S_{2,+}^d)^d} \binom{n}{d} \int_{G(d+1,d)} \nabla_d(x_1, \cdots, x_d) \sigma_{d-1}(dx_1) \cdots \sigma_{d-1}(dx_d) \times \left[\int_{S_{2,+}^d \cap H} \cdots \int_{S_{2,+}^d \cap H} \frac{\sigma_d(S_{2,+}^d \cap H^+)}{\sigma_d(S_{2,+}^d)}^{n-d} + \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} \right] \nu_d(dH)
\]
$\mathbb{E} f_{d-1}(K_n^{(s,2)}) = $

\[
\frac{\omega_{d+1}}{2\sigma_d(S_{2,+}^d)^d} \left(\begin{array}{c} n \\ d \end{array} \right) \int_{G(d+1,d)} \left[\int_{S_{2,+}^d \cap H} \cdots \int_{S_{2,+}^d \cap H} \nabla_d(x_1, \ldots, x_d) \sigma_{d-1}(dx_1) \cdots \sigma_{d-1}(dx_d) \right]^n \nu_d(dH)
\]

$\times \left[\left(\frac{\sigma_d(S_{2,+}^d \cap H^+)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} + \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} \right]$
$$\mathbb{E} f_{d-1}(K_n^{(s,2)}) =$$

$$\frac{\omega_{d+1}}{2\sigma_d(S_{2,+}^d)^d} \binom{n}{d} \int_{G(d+1,d)} \left[\int_{S_{2,+}^d \cap H} \cdots \int_{S_{2,+}^d \cap H} \nabla_d(x_1, \ldots, x_d) \sigma_{d-1}(dx_1) \cdots \sigma_{d-1}(dx_d) \right]$$

$$\times \left[\left(\frac{\sigma_d(S_{2,+}^d \cap H^+)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} + \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} \right] \nu_d(dH)$$

$$= \frac{1}{\sigma_d(S_{2,+}^d)^d} \binom{n}{d} \int_{S^d} \left[\int_{S_{2,+}^d \cap H(z)} \cdots \int_{S_{2,+}^d \cap H(z)} \nabla_d(x_1, \ldots, x_d) \sigma_{d-1}(dx_1) \cdots \sigma_{d-1}(dx_d) \right]$$

$$\times \left(\frac{\sigma_d(S_{2,+}^d \cap H^-)}{\sigma_d(S_{2,+}^d)} \right)^{n-d} \sigma_d(dz)$$
\[c_{d,2} = \frac{2^{d-1}}{d} |\partial B_2^d| A_d \]
\[c_{d,2} = \frac{2^{d-1}}{d} |\partial B_2^d| A_d \]

\[A_d := \mathbb{E} \nabla_d ((U_1, Z_1, 1), \ldots, (U_d, Z_d, 1)) \]

expected \(d \)-dimensional volume of the parallelopiped spanned by \((U_i, Z_i, 1), 1 \leq i \leq d\)
\[c_{d,2} = \frac{2^{d-1}}{d} |\partial B_2^d| A_d \]

\[A_d := \mathbb{E} \nabla_d ((U_1, Z_1, 1), \ldots, (U_d, Z_d, 1)) \]

expected \(d \)-dimensional volume of the parallelopiped spanned by \((U_i, Z_i, 1), 1 \leq i \leq d\)

- \(U_1, \ldots, U_d \) are random variables uniformly distributed on \([-1, 1]\)
- \(Z_1, \ldots, Z_d \) are random vectors distributed according to a beta-prime distribution on \(\mathbb{R}^{d-2}\) with parameter \(\beta = \frac{d+1}{2} \) and probability density function

\[
\frac{\Gamma(\beta)}{\pi^{\frac{d-2}{2}} \Gamma(\beta - \frac{d-2}{2})} (1 + \|x\|^2)^{-\beta}
\]
\[c_{d,2} = \frac{2^{d-1}}{d} |\partial B_d^2| A_d \]

\[A_d := \mathbb{E} \nabla_d ((U_1, Z_1, 1), \ldots, (U_d, Z_d, 1)) \]

expected \(d \)-dimensional volume of the parallelopiped spanned by \((U_i, Z_i, 1), 1 \leq i \leq d\)

- \(U_1, \ldots, U_d \) are random variables uniformly distributed on \([-1, 1]\)
- \(Z_1, \ldots, Z_d \) are random vectors distributed according to a beta-prime distribution on \(\mathbb{R}^{d-2} \) with parameter \(\beta = \frac{d+1}{2} \) and probability density function

\[
\frac{\Gamma(\beta)}{\pi^{\frac{d-2}{2}} \Gamma(\beta - \frac{d-2}{2})} (1 + \|x\|^2)^{-\beta}
\]

\[A_2 = \int_{-1}^{1} \int_{-1}^{1} |x - y| \frac{dx}{2} \frac{dy}{2} = \frac{2}{3} \]