Learning low-degree functions on the discrete hypercube

Alexandros Eskenazis

Phenomena in High Dimensions (IHP)

The hypercube

The hypercube

Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ admits a unique expansion

$$
\forall x \in\{-1,1\}^{n}, \quad f(x)=\sum_{S \subseteq\{1, \ldots, n\}} \hat{f}(S) w_{S}(x)
$$

where the Walsh functions are given by $w_{S}(x)=\prod_{i \in S} x_{i}$.

The hypercube

Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ admits a unique expansion

$$
\forall x \in\{-1,1\}^{n}, \quad f(x)=\sum_{S \subseteq\{1, \ldots, n\}} \hat{f}(S) w_{S}(x)
$$

where the Walsh functions are given by $w_{S}(x)=\prod_{i \in S} x_{i}$. The corresponding Fourier coefficients are then given by

$$
\forall S \subseteq\{1, \ldots, n\}, \quad \hat{f}(S)=\mathbb{E}\left[f(x) w_{S}(x)\right]
$$

where x is uniformly distributed on $\{-1,1\}^{n}$.

The hypercube

Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ admits a unique expansion

$$
\forall x \in\{-1,1\}^{n}, \quad f(x)=\sum_{S \subseteq\{1, \ldots, n\}} \hat{f}(S) w_{S}(x)
$$

where the Walsh functions are given by $w_{S}(x)=\prod_{i \in S} x_{i}$. The corresponding Fourier coefficients are then given by

$$
\forall S \subseteq\{1, \ldots, n\}, \quad \hat{f}(S)=\mathbb{E}\left[f(x) w_{S}(x)\right]
$$

where x is uniformly distributed on $\{-1,1\}^{n}$. We say that f has degree at most d if $\hat{f}(S)=0$ when $|S|>d$.

Learning

Learning

Let \mathscr{F} be a class of functions on $\{-1,1\}^{n}$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{Q}, f\left(X_{Q}\right)\right)
$$

where $X_{1}, \ldots, X_{Q} \in\{-1,1\}^{n}$, we want to algorithmically construct a hypothesis function $h:\{-1,1\}^{n} \rightarrow \mathbb{R}$ which well-approximates f.

Learning

Let \mathscr{F} be a class of functions on $\{-1,1\}^{n}$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{Q}, f\left(X_{Q}\right)\right)
$$

where $X_{1}, \ldots, X_{Q} \in\{-1,1\}^{n}$, we want to algorithmically construct a hypothesis function $h:\{-1,1\}^{n} \rightarrow \mathbb{R}$ which well-approximates f.

Query model. The algorithm can sequentially request any selection of samples X_{1}, X_{2}, \ldots.

Learning

Let \mathscr{F} be a class of functions on $\{-1,1\}^{n}$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{Q}, f\left(X_{Q}\right)\right)
$$

where $X_{1}, \ldots, X_{Q} \in\{-1,1\}^{n}$, we want to algorithmically construct a hypothesis function $h:\{-1,1\}^{n} \rightarrow \mathbb{R}$ which well-approximates f.

Query model. The algorithm can sequentially request any selection of samples X_{1}, X_{2}, \ldots..
Random example model. The samples X_{1}, X_{2}, \ldots are
i.i.d. random variables, uniformly distributed on the hypercube. In this model, the output function h is random and we want it to be a good approximation of f with high probability.

Learning

Question. How many samples do we need?

Learning

Question. How many samples do we need?
Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_{2}^{2} \leq \varepsilon$.

Learning

Question. How many samples do we need?
Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_{2}^{2} \leq \varepsilon$.
Random example model. Denote by $Q_{r}(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a random function h satisfying $\|h-f\|_{2}^{2} \leq \varepsilon$ with probability at least $1-\delta$.

Learning

Question. How many samples do we need?
Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_{2}^{2} \leq \varepsilon$.
Random example model. Denote by $Q_{r}(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a random function h satisfying $\|h-f\|_{2}^{2} \leq \varepsilon$ with probability at least $1-\delta$.

Some structure is needed! If $\mathscr{F}=\left\{f:\{-1,1\}^{n} \rightarrow\{0,1\}\right\}$, one needs at least $(1-\varepsilon) 2^{n}$ values of an unknown $f \in \mathscr{F}$ in order to make an accurate hypothesis for f up to error ε.

Learning

Question. How many samples do we need?
Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_{2}^{2} \leq \varepsilon$.
Random example model. Denote by $Q_{r}(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a random function h satisfying $\|h-f\|_{2}^{2} \leq \varepsilon$ with probability at least $1-\delta$.

Some structure is needed! If $\mathscr{F}=\left\{f:\{-1,1\}^{n} \rightarrow\{0,1\}\right\}$, one needs at least $(1-\varepsilon) 2^{n}$ values of an unknown $f \in \mathscr{F}$ in order to make an accurate hypothesis for f up to error ε.

Structure $=$ Low Complexity

Learning polynomials

Learning polynomials

One of the first concept classes \mathscr{F} that was rigorously studied was

$$
\mathscr{F}_{n, d}=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \operatorname{deg}(f) \leq d\right\} .
$$

Learning polynomials

One of the first concept classes \mathscr{F} that was rigorously studied was

$$
\mathscr{F}_{n, d}=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \operatorname{deg}(f) \leq d\right\} .
$$

Why? Polynomials can be characterized by few values.

Learning polynomials

One of the first concept classes \mathscr{F} that was rigorously studied was

$$
\mathscr{F}_{n, d}=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \operatorname{deg}(f) \leq d\right\} .
$$

Why? Polynomials can be characterized by few values.
Toy result. $Q\left(\mathscr{F}_{n, d}, 0\right)=\sum_{j=0}^{d}\binom{n}{j}$

Learning polynomials

One of the first concept classes \mathscr{F} that was rigorously studied was

$$
\mathscr{F}_{n, d}=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \operatorname{deg}(f) \leq d\right\} .
$$

Why? Polynomials can be characterized by few values.
Toy result. $Q\left(\mathscr{F}_{n, d}, 0\right)=\sum_{j=0}^{d}\binom{n}{j}$
Proof. It suffices to check that any degree-d polynomial is fully characterized by its values on a Hamming ball of radius d, e.g.

$$
B_{d}(\mathbf{1})=\{x \text { with at most } d \text { coordinates equal to }-1\} .
$$

Learning polynomials

One of the first concept classes \mathscr{F} that was rigorously studied was

$$
\mathscr{F}_{n, d}=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \operatorname{deg}(f) \leq d\right\} .
$$

Why? Polynomials can be characterized by few values.
Toy result. $Q\left(\mathscr{F}_{n, d}, 0\right)=\sum_{j=0}^{d}\binom{n}{j}$
Proof. It suffices to check that any degree-d polynomial is fully characterized by its values on a Hamming ball of radius d, e.g.

$$
B_{d}(\mathbf{1})=\{x \text { with at most } d \text { coordinates equal to }-1\} .
$$

To see that this many samples are also needed, observe that with fewer data points, the system would be undertermined.

The Low-Degree Algorithm

Question. What about the random case?

The Low-Degree Algorithm

Question. What about the random case?
This question was first addressed in a fundamental result:
Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right) \leq \frac{2 n^{d}}{\varepsilon} \log \left(\frac{2 n^{d}}{\delta}\right)
$$

The Low-Degree Algorithm

Question. What about the random case?
This question was first addressed in a fundamental result:
Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right) \leq \frac{2 n^{d}}{\varepsilon} \log \left(\frac{2 n^{d}}{\delta}\right)
$$

Proof. Let X_{1}, \ldots, X_{Q} i.i.d. random samples. For a subset S, let

$$
\alpha_{S}=\frac{1}{Q} \sum_{j=1}^{Q} f\left(X_{j}\right) w_{S}\left(X_{j}\right)
$$

which is a sum of bounded indep. variables with $\mathbb{E}\left[\alpha_{S}\right]=\hat{f}(S)$.

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for $b>0$ we have

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \geq b\right\} \leq 2 \exp \left(-Q b^{2} / 2\right)
$$

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for $b>0$ we have

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \geq b\right\} \leq 2 \exp \left(-Q b^{2} / 2\right)
$$

By the union bound,

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \leq b, \forall S\right\} \geq 1-2 \sum_{j=0}^{d}\binom{n}{j} \exp \left(-Q b^{2} / 2\right) \geq 1-\delta
$$

for

$$
Q=\left\lceil\frac{2}{b^{2}} \log \left(\frac{2}{\delta} \sum_{j=0}^{d}\binom{n}{j}\right)\right\rceil .
$$

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for $b>0$ we have

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \geq b\right\} \leq 2 \exp \left(-Q b^{2} / 2\right)
$$

By the union bound,

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \leq b, \forall S\right\} \geq 1-2 \sum_{j=0}^{d}\binom{n}{j} \exp \left(-Q b^{2} / 2\right) \geq 1-\delta
$$

for

$$
Q=\left\lceil\frac{2}{b^{2}} \log \left(\frac{2}{\delta} \sum_{j=0}^{d}\binom{n}{j}\right)\right\rceil .
$$

How large can we take b ?

The Low-Degree Algorithm

Consider the function

$$
\forall x \in\{-1,1\}, \quad h_{b}(x)=\sum_{|S| \leq d} \alpha_{S} w_{S}(x) .
$$

The Low-Degree Algorithm

Consider the function

$$
\forall x \in\{-1,1\}, \quad h_{b}(x)=\sum_{|S| \leq d} \alpha_{S} w_{S}(x) .
$$

Then, if the high probability event holds

$$
\left\|f-h_{b}\right\|_{2}^{2}=\sum_{|S| \leq d}\left(\alpha_{S}-\hat{f}(S)\right)^{2} \leq \sum_{j=0}^{d}\binom{n}{j} b^{2} \leq \varepsilon
$$

for $b^{2} \leq \varepsilon / \sum_{j=0}^{d}\binom{n}{j}$ which completes the proof.

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, 0, \delta\right) \leq 2^{O(d)} n^{d} \log \left(\frac{n}{\delta}\right)$.

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, 0, \delta\right) \leq 2^{O(d)} n^{d} \log \left(\frac{n}{\delta}\right)$.

The first advance for $\varepsilon>0$ was a result of: lyer-Rao-Reis-Rothvoss-Yehudayoff (2021).

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}\left(n^{d-1} \log n\right)
$$

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, 0, \delta\right) \leq 2^{O(d)} n^{d} \log \left(\frac{n}{\delta}\right)$.

The first advance for $\varepsilon>0$ was a result of:
lyer-Rao-Reis-Rothvoss-Yehudayoff (2021).

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}\left(n^{d-1} \log n\right)
$$

The correct answer turns out to be much better.
E.-Ivanisvili (2021). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n)$.

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, 0, \delta\right) \leq 2^{O(d)} n^{d} \log \left(\frac{n}{\delta}\right)$.

The first advance for $\varepsilon>0$ was a result of:
lyer-Rao-Reis-Rothvoss-Yehudayoff (2021).

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}\left(n^{d-1} \log n\right)
$$

The correct answer turns out to be much better.
E.-Ivanisvili (2021). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n)$.
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=\Omega_{d, \varepsilon, \delta}(\log n)$.

Learning polynomials

Question. Are $O\left(n^{d} \log n\right)$ samples too many?
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, 0, \delta\right) \leq 2^{O(d)} n^{d} \log \left(\frac{n}{\delta}\right)$.

The first advance for $\varepsilon>0$ was a result of:
lyer-Rao-Reis-Rothvoss-Yehudayoff (2021).

$$
Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}\left(n^{d-1} \log n\right)
$$

The correct answer turns out to be much better.
E.-Ivanisvili (2021). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n)$.
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=\Omega_{d, \varepsilon, \delta}(\log n)$.

Tweaking the Low-Degree Algorithm

Where did we lose in the proof?

Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since $\|f\|_{2} \leq 1$, we have

$$
\sum_{|S| \leq d} \hat{f}(S)^{2} \leq 1
$$

so unless $b^{2} \lesssim n^{-d}$ there is not much to gain by incorporating all the empirical coefficients α_{S} in the hypothesis function h_{b}. We should just make sure to include the few influential ones, say those larger than a. By Markov's inequality there are

$$
\#\{S:|\hat{f}(S)|>a\} \leq \frac{1}{a^{2}} \sum_{S:|\hat{f}(S)|>a} \hat{f}(S)^{2} \leq \frac{1}{a^{2}}
$$

Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since $\|f\|_{2} \leq 1$, we have

$$
\sum_{|S| \leq d} \hat{f}(S)^{2} \leq 1
$$

so unless $b^{2} \lesssim n^{-d}$ there is not much to gain by incorporating all the empirical coefficients α_{S} in the hypothesis function h_{b}. We should just make sure to include the few influential ones, say those larger than a. By Markov's inequality there are

$$
\#\{S:|\hat{f}(S)|>a\} \leq \frac{1}{a^{2}} \sum_{S:|\hat{f}(S)|>a} \hat{f}(S)^{2} \leq \frac{1}{a^{2}}
$$

Then, we are left to estimate a term of the form

$$
\sum_{|\hat{f}(S)| \leq a} \hat{f}(S)^{2} \stackrel{? ?}{\gtrless} \varepsilon(a) .
$$

Digression: Littlewood, BH,...

Digression: Littlewood, BH,...

Trivially, for $a_{1}, a_{2}, \ldots \in \mathbb{R}$,

$$
\sum_{i \geq 1}\left|a_{i}\right|=\sup \left\{\left|\sum_{i \geq 1} a_{i} x_{i}\right|:\|x\|_{\infty} \leq 1\right\}
$$

Digression: Littlewood, BH,...

Trivially, for $a_{1}, a_{2}, \ldots \in \mathbb{R}$,

$$
\sum_{i \geq 1}\left|a_{i}\right|=\sup \left\{\left|\sum_{i \geq 1} a_{i} x_{i}\right|:\|x\|_{\infty} \leq 1\right\}
$$

Littlewood's $\frac{4}{3}$-inequality. For $a_{i j} \in \mathbb{R}$, where $i, j \geq 1$

$$
\left(\sum_{i, j \geq 1}\left|a_{i j}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}} \leq \sqrt{2} \sup \left\{\left|\sum_{i, j \geq 1} a_{i j} x_{i} y_{j}\right|:\|x\|_{\infty},\|y\|_{\infty} \leq 1\right\}
$$

Digression: Littlewood, BH,...

Bohnenblust-Hille inequality. For a degree- d polynomial $p(x)=\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}$ on infinitely many variables,

$$
\left(\sum_{|\alpha| \leq d}\left|c_{\alpha}\right|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C_{d} \sup \left\{|p(x)|:\|x\|_{\infty} \leq 1\right\}
$$

Digression: Littlewood, BH,...

Bohnenblust-Hille inequality. For a degree- d polynomial $p(x)=\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}$ on infinitely many variables,

$$
\left(\sum_{|\alpha| \leq d}\left|c_{\alpha}\right|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C_{d} \sup \left\{|p(x)|:\|x\|_{\infty} \leq 1\right\}
$$

If p is a multilinear polynomial representing $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, the maximum on the RHS is attained at a vertex of $\{-1,1\}^{n}$. Thus, we can get an estimate on the hypercube

$$
\left(\sum_{|S| \leq d}|\hat{f}(S)|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq B_{d}\|f\|_{\infty}
$$

for functions of degree at most d.

Proof of the logarithmic bound on the queries

Proof of the logarithmic bound on the queries

The idea of introducing a cutoff for the spectrum first appeared in an algorithm of Kushilevitz and Mansour (1993). Fix $b>0$ and set

$$
Q=\left\lceil\frac{2}{b^{2}} \log \left(\frac{2}{\delta} \sum_{j=0}^{d}\binom{n}{j}\right)\right\rceil
$$

so that

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \leq b, \forall S\right\} \geq 1-2 \sum_{j=0}^{d}\binom{n}{j} \exp \left(-Q b^{2} / 2\right) \geq 1-\delta
$$

Proof of the logarithmic bound on the queries

The idea of introducing a cutoff for the spectrum first appeared in an algorithm of Kushilevitz and Mansour (1993). Fix $b>0$ and set

$$
Q=\left\lceil\frac{2}{b^{2}} \log \left(\frac{2}{\delta} \sum_{j=0}^{d}\binom{n}{j}\right)\right\rceil
$$

so that

$$
\mathbb{P}\left\{\left|\alpha_{S}-\hat{f}(S)\right| \leq b, \forall S\right\} \geq 1-2 \sum_{j=0}^{d}\binom{n}{j} \exp \left(-Q b^{2} / 2\right) \geq 1-\delta
$$

Consider the random collection of sets

$$
\Sigma_{b}=\left\{S:\left|\alpha_{S}\right|>2 b\right\}
$$

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

$$
\forall S \in \Sigma_{b}, \quad|\hat{f}(S)|>b
$$

and

$$
\forall S \notin \Sigma_{b}, \quad|\hat{f}(S)| \leq 3 b
$$

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

$$
\forall S \in \Sigma_{b}, \quad|\hat{f}(S)|>b
$$

and

$$
\forall S \notin \Sigma_{b}, \quad|\hat{f}(S)| \leq 3 b
$$

If we define $h_{b}=\sum_{S \in \Sigma_{b}} \alpha_{S} w_{S}$, then

$$
\left\|f-h_{b}\right\|_{2}^{2}=\sum_{S \in \Sigma_{b}}\left(\alpha_{S}-\hat{f}(S)\right)^{2}+\sum_{S \notin \Sigma_{b}} \hat{f}(S)^{2}=(1)+(2)
$$

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

$$
\forall S \in \Sigma_{b}, \quad|\hat{f}(S)|>b
$$

and

$$
\forall S \notin \Sigma_{b}, \quad|\hat{f}(S)| \leq 3 b
$$

If we define $h_{b}=\sum_{S \in \Sigma_{b}} \alpha_{S} w_{S}$, then

$$
\left\|f-h_{b}\right\|_{2}^{2}=\sum_{S \in \Sigma_{b}}\left(\alpha_{S}-\hat{f}(S)\right)^{2}+\sum_{S \notin \Sigma_{b}} \hat{f}(S)^{2}=(1)+(2)
$$

To bound (1), observe that

$$
\left|\Sigma_{b}\right| \leq b^{-\frac{2 d}{d+1}} \sum_{S \in \Sigma_{b}} \hat{f}(S)^{\frac{2 d}{d+1}} \leq B_{d}^{\frac{2 d}{d+1}} b^{-\frac{2 d}{d+1}}
$$

so that $(1) \leq B_{d}^{\frac{2 d}{d+1}} b^{\frac{2}{d+1}}$.

Proof of the logarithmic bound on the queries

To bound (2), write

$$
\text { (2) } \left.=\sum_{S \notin \Sigma_{b}} \hat{f}(S)^{2} \leq(3 b)^{\frac{2}{d+1}} \sum_{S \notin \Sigma_{b}} \right\rvert\, \hat{f}(S)^{\frac{2 d}{d+1}} \leq 3 B_{d}^{\frac{2 d}{d+1}} b^{\frac{2}{d+1}} .
$$

Proof of the logarithmic bound on the queries

To bound (2), write

$$
(2)=\sum_{S \notin \Sigma_{b}} \hat{f}(S)^{2} \leq(3 b)^{\frac{2}{d+1}} \sum_{S \notin \Sigma_{b}}|\hat{f}(S)|^{\frac{2 d}{d+1}} \leq 3 B_{d}^{\frac{2 d}{d+1}} b^{\frac{2}{d+1}} .
$$

Putting everything together

$$
\left\|f-h_{b}\right\|_{2}^{2} \leq 4 B_{d}^{\frac{2 d}{d+1}} b^{\frac{2}{d+1}} \leq \varepsilon
$$

for $b^{2} \leq(\varepsilon / 4)^{d+1} B_{d}^{-\frac{2 d}{d+1}}$.

Remarks

$$
\begin{aligned}
& \text { E.-Ivanisvili }(2021) . Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n) . \\
& \text { E.-Ivanisvili-Streck }(2022) . Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=\Omega_{d, \varepsilon, \delta}(\log n) .
\end{aligned}
$$

Remarks

E.-Ivanisvili (2021). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n)$.

E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=\Omega_{d, \varepsilon, \delta}(\log n)$.

In fact, for n large enough,

$$
c(1-\sqrt{\varepsilon}) 2^{d} \log \left(\frac{n}{\delta}\right) \leq Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right) \leq \frac{B_{d}^{2 d}}{\varepsilon^{d+1}} \log \left(\frac{n}{\delta}\right) .
$$

Remarks

E.-Ivanisvili (2021). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=O_{d, \varepsilon, \delta}(\log n)$.
E.-Ivanisvili-Streck (2022). $Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right)=\Omega_{d, \varepsilon, \delta}(\log n)$.

In fact, for n large enough,

$$
c(1-\sqrt{\varepsilon}) 2^{d} \log \left(\frac{n}{\delta}\right) \leq Q_{r}\left(\mathscr{F}_{n, d}, \varepsilon, \delta\right) \leq \frac{B_{d}^{2 d}}{\varepsilon^{d+1}} \log \left(\frac{n}{\delta}\right) .
$$

- The best known bound for B_{d} is $B_{d} \leq \exp (C \sqrt{d \log d})$. A (conjectured) polynomial bound on B_{d} would give almost optimal dependence on d also.
- The dependence on ε can be improved to ε^{-1} if the unknown function is a priori known to be Boolean.

Beyond polynomials?

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Beyond polynomials?

Pro. Correct query complexity of polynomials.
Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

Beyond polynomials?

Pro. Correct query complexity of polynomials.
Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

$$
\mathscr{F}_{n, d}(t)=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \sum_{|S|>d} \hat{f}(S)^{2} \leq t\right\} ?
$$

Beyond polynomials?

Pro. Correct query complexity of polynomials.
Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

$$
\mathscr{F}_{n, d}(t)=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \sum_{|S|>d} \hat{f}(S)^{2} \leq t\right\} ?
$$

E.-Ivanisvili-Streck (2022). There exists $\eta=\eta(t, d)>0$ s.t.

$$
Q_{r}\left(\mathscr{F}_{n, d}(t), \eta+\varepsilon, \delta\right) \lesssim_{t, d, \varepsilon} \log \left(\frac{n}{\delta}\right)
$$

Beyond polynomials?

Pro. Correct query complexity of polynomials.
Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

$$
\mathscr{F}_{n, d}(t)=\left\{f:\{-1,1\}^{n} \rightarrow[-1,1]: \sum_{|S|>d} \hat{f}(S)^{2} \leq t\right\} ?
$$

E.-Ivanisvili-Streck (2022). There exists $\eta=\eta(t, d)>0$ s.t.

$$
Q_{r}\left(\mathscr{F}_{n, d}(t), \eta+\varepsilon, \delta\right) \lesssim_{t, d, \varepsilon} \log \left(\frac{n}{\delta}\right) .
$$

Warning! This is useful only when $\eta(t, d)$ is small.

Beyond polynomials?

More concretely, consider $\mathscr{B}_{n, d}(t)$ the subclass of $\mathscr{F}_{n, d}(t)$ consisting of Boolean functions.

Beyond polynomials?

More concretely, consider $\mathscr{B}_{n, d}(t)$ the subclass of $\mathscr{F}_{n, d}(t)$ consisting of Boolean functions.
E.-Ivanisvili-Streck (2022). We have

$$
t=o\left(\frac{1}{\sqrt{d}}\right) \quad \Longrightarrow \quad Q_{r}\left(\mathscr{B}_{n, d}(t), \varepsilon, \delta\right) \lesssim t, d, \varepsilon \log \left(\frac{n}{\delta}\right)
$$

for $\varepsilon>0$ arbitrarily small constant.

Beyond polynomials?

More concretely, consider $\mathscr{B}_{n, d}(t)$ the subclass of $\mathscr{F}_{n, d}(t)$ consisting of Boolean functions.
E.-Ivanisvili-Streck (2022). We have

$$
t=o\left(\frac{1}{\sqrt{d}}\right) \quad \Longrightarrow \quad Q_{r}\left(\mathscr{B}_{n, d}(t), \varepsilon, \delta\right) \lesssim_{t, d, \varepsilon} \log \left(\frac{n}{\delta}\right)
$$

for $\varepsilon>0$ arbitrarily small constant.
Conversely, we can also prove that

$$
t=\Omega\left(\frac{1}{\sqrt{d}}\right) \quad \Longrightarrow \quad Q_{r}\left(\mathscr{B}_{n, d}(t), \frac{1}{3}, \frac{1}{3}\right) \gtrsim t, d n .
$$

Linear threshold functions

Linear threshold functions

A Boolean function of the form $f(x)=\operatorname{sign}(\langle x, \theta\rangle)$ for a fixed vector $\theta \in \mathbb{R}^{n}$ is called a linear threshold function.

Linear threshold functions

A Boolean function of the form $f(x)=\operatorname{sign}(\langle x, \theta\rangle)$ for a fixed vector $\theta \in \mathbb{R}^{n}$ is called a linear threshold function. Peres' noise sensitivity theorem (2004) asserts that any LTF satisfies

$$
\forall t>0, \quad \sum_{|S|>\Omega\left(1 / t^{2}\right)} \hat{f}(S) \leq t .
$$

Linear threshold functions

A Boolean function of the form $f(x)=\operatorname{sign}(\langle x, \theta\rangle)$ for a fixed vector $\theta \in \mathbb{R}^{n}$ is called a linear threshold function. Peres' noise sensitivity theorem (2004) asserts that any LTF satisfies

$$
\forall t>0, \quad \sum_{|S|>\Omega\left(1 / t^{2}\right)} \hat{f}(S) \leq t .
$$

As this estimate is in general optimal, the existing algorithm does not allow us to efficiently learn LTFs.

DNF formulas

DNF formulas

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_{i} or their negations $\neg x_{i}$,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3}\right)
$$

DNF formulas

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_{i} or their negations $\neg x_{i}$,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3}\right)
$$

The number of terms is the size of the DNF (=3 in the example).

DNF formulas

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_{i} or their negations $\neg x_{i}$,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3}\right)
$$

The number of terms is the size of the DNF (=3 in the example). It is known that any DNF form of size satisfies

$$
\forall t>0, \quad \sum_{|S|>\Omega\left(\log (s / t)^{2}\right)} \hat{f}(S) \leq t
$$

DNF formulas

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_{i} or their negations $\neg x_{i}$,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3}\right)
$$

The number of terms is the size of the DNF (=3 in the example). It is known that any DNF form of size satisfies

$$
\forall t>0, \quad \sum_{|S|>\Omega\left(\log (s / t)^{2}\right)} \hat{f}(S) \leq t
$$

and plugging this choice of d, one obtains new learning results for the class of DNF formulas.

Thank you!

