L_{p} Steiner formula and its coefficients

Kateryna Tatarko
(joint work with Elisabeth Werner)

University of Waterloo

Phenomena in High Dimension

Classical Steiner formula

For a convex body K and $t \geq 0$, the classical Steiner formula is

$$
\operatorname{Vol}_{n}\left(K+t B_{2}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} W_{i}(K) t^{i}=\sum_{i=0}^{n} \operatorname{Vol}_{n-i}\left(B_{2}^{n-i}\right) V_{i}(K) t^{n-i}
$$

where B_{2}^{n} is a Euclidean unit ball in \mathbb{R}^{n}.

Classical Steiner formula

For a convex body K and $t \geq 0$,

$$
\operatorname{Vol}_{n}\left(K+t B_{2}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} W_{i}(K) t^{i}=\sum_{i=0}^{n} \operatorname{Vol}_{n-i}\left(B_{2}^{n-i}\right) V_{i}(K) t^{n-i}
$$

The coefficients $W_{i}(K)$ and $V_{i}(K)$ are called quermassintegrals and intrinsic volumes, respectively.

In particular,

$$
\begin{aligned}
& W_{0}(K)=\operatorname{Vol}_{n}(K) \\
& W_{1}(K)=\frac{1}{n} \operatorname{Vol}_{n-1}(\partial K) \\
& W_{n}(K)=\operatorname{Vol}_{n}\left(B_{2}^{n}\right)
\end{aligned}
$$

the volume
the surface area
the volume of the unit ball

Steiner formula of the dual Brunn Minkowski theory

The radial function of a star body K is defined by

$$
\rho_{K}(u)=\max \{\lambda \geq 0 \mid \lambda u \in K\} \quad \text { for any } u \in S^{n-1} .
$$

For star bodies K and L, the radial sum $\alpha K \widetilde{+} \beta L$ is the star body with the radial function

$$
\rho_{\alpha \kappa \tilde{\gamma} \beta L}(u)=\alpha \rho_{\kappa}(u)+\beta \rho_{L}(u) .
$$

Steiner formula of the dual Brunn Minkowski theory

The radial function of a star body K is defined by

$$
\rho_{K}(u)=\max \{\lambda \geq 0 \mid \lambda u \in K\} \quad \text { for any } u \in S^{n-1} .
$$

For star bodies K and L, the radial sum $\alpha K \widetilde{+} \beta L$ is the star body with the radial function

$$
\rho_{\alpha K \tilde{\gamma} \beta L}(u)=\alpha \rho_{\kappa}(u)+\beta \rho_{L}(u) .
$$

Steiner formula of the dual Brunn Minkowski theory

For a star body K and $t \geq 0$, we have that

$$
\operatorname{Vol}_{n}\left(K \widetilde{+} t B_{2}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} \widetilde{W}_{i}(K) t^{i}
$$

where $\widetilde{+}$ is a radial addition. The coefficients $\widetilde{W}_{i}(K)$ are called dual quermassintegrals that were introduced by Lutwak.

Steiner formula of the dual Brunn Minkowski theory

For a star body K and $t \geq 0$, we have that

$$
\operatorname{Vol}_{n}\left(K \widetilde{+} t B_{2}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} \widetilde{W}_{i}(K) t^{i}
$$

where $\widetilde{+}$ is a radial addition. The coefficients $\widetilde{W}_{i}(K)$ are called dual quermassintegrals that were introduced by Lutwak.

Dual quermassintegrals of order i can be written as

$$
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(u)^{n-i} d \sigma(u)
$$

L_{p} affine surface area

For real $p \neq-n$, the L_{p} affine surface area is defined as

$$
a s_{\rho}(K)=\int_{\partial K} \frac{H_{n-1}(x)^{\frac{p}{n+p}}}{\langle x, N(x)\rangle^{\frac{n(p-1)}{n+p}}} d \mathcal{H}^{n-1}(x),
$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and $N(x)$ is the outer normal vector at x.

L_{p} affine surface area

For real $p \neq-n$, the L_{p} affine surface area is defined as

$$
a s_{\rho}(K)=\int_{\partial K} \frac{H_{n-1}(x)^{\frac{p}{n+p}}}{\langle x, N(x)\rangle^{\frac{n(p-1)}{n+p}}} d \mathcal{H}^{n-1}(x),
$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and $N(x)$ is the outer normal vector at x.

When $p=1$, we recover the classical affine surface area $a s_{1}(K)$:

$$
a s_{1}(K)=\int_{\partial K} H_{n-1}(x)^{\frac{1}{n+1}} d \mathcal{H}^{n-1}(x)
$$

L_{p} affine surface area

For real $p \neq-n$, the L_{p} affine surface area is defined as

$$
a s_{\rho}(K)=\int_{\partial K} \frac{H_{n-1}(x)^{\frac{p}{n+p}}}{\langle x, N(x)\rangle^{\frac{n(p-1)}{n+p}}} d \mathcal{H}^{n-1}(x),
$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and $N(x)$ is the outer normal vector at x.

When $p=1$, we recover the classical affine surface area $a s_{1}(K)$:

$$
a s_{1}(K)=\int_{\partial K} H_{n-1}(x)^{\frac{1}{n+1}} d \mathcal{H}^{n-1}(x)
$$

For $p=0$,

$$
a s_{0}(K)=\int_{\partial K}\langle x, N(x)\rangle d \mathcal{H}^{n-1}(x)=n \operatorname{Vol}_{n}(K)
$$

L_{p} affine surface area over the sphere

If the boundary of K is sufficiently smooth, then

$$
a s_{p}(K)=\int_{S^{n-1}} f_{K}(u)^{\frac{n}{n+p}} h_{K}(u)^{\frac{n(1-p)}{n+p}} d \sigma(u)
$$

where $f_{K}(u)$ is the curvature function, i.e. $f_{K}(u)$ is the reciprocal of $H_{n-1}(x)$ at $x \in \partial K$ that has u as outer normal, and $h_{K}(u)$ is the support function of K.

L_{p} affine surface area over the sphere

If the boundary of K is sufficiently smooth, then

$$
a s_{p}(K)=\int_{S^{n-1}} f_{K}(u)^{\frac{n}{n+p}} h_{K}(u)^{\frac{n(1-p)}{n+p}} d \sigma(u),
$$

where $f_{K}(u)$ is the curvature function, i.e. $f_{K}(u)$ is the reciprocal of $H_{n-1}(x)$ at $x \in \partial K$ that has u as outer normal, and $h_{K}(u)$ is the support function of K.

For $p= \pm \infty$

$$
a s_{ \pm \infty}(K)=\int_{S^{n-1}} \frac{1}{h_{K}(u)^{n}} d \sigma(u)=n \operatorname{Vol}_{n}\left(K^{\circ}\right),
$$

where $K^{\circ}=\left\{y \in \mathbb{R}^{n},\langle x, y\rangle \leq 1, \forall x \in K\right\}$ is the polar body of K.

L_{p} Steiner formula for the L_{p} affine surface area

Theorem (T., Werner, 2019)

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Let $t \in \mathbb{R}$ be such that $0 \leq t<\min _{u \in S^{n-1}} h_{K}(u)$. For all $p \in \mathbb{R}, p \neq-n$,

$$
a s_{p}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{\infty}\left[\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(K)\right] t^{k}=\sum_{k=0}^{\infty} \mathcal{V}_{k}^{p}(K) t^{k}
$$

In particular,

$$
a s_{1}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{\infty} \mathcal{W}_{k, k}(K) t^{k}=\sum_{k=0}^{\infty} \mathcal{V}_{k}^{1}(K) t^{k}
$$

The coefficients $\mathcal{W}_{m, k}^{p}(K)$ and $\mathcal{V}_{k}^{p}(K)$ are called L_{p} Steiner coefficients and L_{p}-Steiner quermassintegrals.

Elementary symmetric functions of the principal curvatures

The j-th normalized elementary symmetric functions of the principal curvatures are

$$
H_{j}=\binom{n-1}{j}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n-1} k_{i_{1}} \cdots k_{i_{j}}
$$

for $j=1, \ldots, n-1$ and $H_{0}=1$.

Elementary symmetric functions of the principal curvatures

The j-th normalized elementary symmetric functions of the principal curvatures are

$$
H_{j}=\binom{n-1}{j}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n-1} k_{i_{1}} \cdots k_{i_{j}}
$$

for $j=1, \ldots, n-1$ and $H_{0}=1$.

$$
\begin{aligned}
H_{1} & =\frac{1}{n-1} \sum_{1 \leq i \leq n-1} k_{i} \\
H_{n-1} & =\prod_{i=1}^{n-1} k_{i}
\end{aligned}
$$

the mean curvature
the Gauss curvature

Coefficients in L_{p} Steiner formula

For a general convex body K, the L_{p} Steiner coefficients are defined as
$\mathcal{W}_{m, k}^{p}(K)=$
$\int_{\partial K}\langle x, N(x)\rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}} d \mathcal{H}^{n-1}$,
where

$$
c(n, p, i(m))=\binom{\frac{n}{n+p}}{i_{1}+\cdots+i_{n-1}}\binom{i_{1}+\cdots+i_{n-1}}{i_{1}, i_{2}, \ldots, i_{n-1}}
$$

such that the sequence $i(m)=\left\{i_{j}\right\}_{j=0}^{n-1}$ satisfies $i_{1}+2 i_{2}+\ldots+(n-1) i_{n-1}=m$.

Coefficients in L_{p} Steiner formula

For a general convex body K, the L_{p} Steiner coefficients are defined as

$$
\mathcal{W}_{m, k}^{p}(K)=
$$

$\int_{\partial K}\langle x, N(x)\rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}} d \mathcal{H}^{n-1}$,
where

$$
c(n, p, i(m))=\binom{\frac{n}{n+p}}{i_{1}+\cdots+i_{n-1}}\binom{i_{1}+\cdots+i_{n-1}}{i_{1}, i_{2}, \ldots, i_{n-1}}
$$

such that the sequence $i(m)=\left\{i_{j}\right\}_{j=0}^{n-1}$ satisfies $i_{1}+2 i_{2}+\ldots+(n-1) i_{n-1}=m$.
In analogy to the classical Steiner formula, for a general convex body K in \mathbb{R}^{n} the L_{p}-Steiner quermassintegrals are defined as

$$
\mathcal{V}_{k}^{p}(K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(K)
$$

Special cases: $p=0$

If K is C_{+}^{2}, then

$$
\mathcal{V}_{k}^{0}(K)=n\binom{n}{k} W_{k}(K)=\binom{n}{k} \int_{\partial K} H_{k-1} d \mathcal{H}^{n-1} .
$$

In particular,

$$
\mathcal{V}_{0}^{0}(K)=n \operatorname{Vol}_{n}(K)=a s_{0}(K) .
$$

Corollary (Classical Steiner formula, $p=0$)

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{0}\left(K+t B_{2}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} W_{i}(K) t^{i} .
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-l)}{l}, l \in \mathbb{N}\right)$
Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{\prime}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 /-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)($ true for arbitrary $p)$:

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-I)}{l}, I \in \mathbb{N}\right)$

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{l}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 /-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)$ (true for arbitrary $\left.p\right)$:

$$
\mathcal{V}_{k}^{p}(K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(K)
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-I)}{l}, I \in \mathbb{N}\right)$

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{\prime}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 l-1)} \mathcal{V}_{k}^{p}(K) t^{k} .
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)($ true for arbitrary $p):$

$$
k=0: \quad \mathcal{V}_{0}^{p}(K)=\sum_{m=0}^{0}\binom{\frac{n(1-p)}{n+p}}{0-m} \mathcal{W}_{m, 0}^{p}(K)
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-l)}{l}, I \in \mathbb{N}\right)$
Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{\prime}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 l-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)($ true for arbitrary $p)$:

$$
k=0: \quad \mathcal{V}_{0}^{p}(K) \stackrel{m=0}{=}\binom{\frac{n(1-p)}{n+p}}{0} \mathcal{W}_{0,0}^{p}(K)
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-I)}{I}, I \in \mathbb{N}\right)$

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{l}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 l-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)($ true for arbitrary $p)$:

$$
k=0: \quad \mathcal{V}_{0}^{p}(K)=\mathcal{W}_{0,0}^{p}(K)=
$$

$$
\mathcal{W}_{m, k}^{p}(K)=
$$

$$
\int_{\partial K}\langle x, N(x)\rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}} d \mathcal{H}^{n-1}
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-I)}{l}, I \in \mathbb{N}\right)$

Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{l}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 /-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)$ (true for arbitrary $\left.p\right)$:

$$
k=0: \quad \mathcal{V}_{0}^{p}(K)=\mathcal{W}_{0,0}^{p}(K)=\int_{\partial K} \frac{H_{n-1}^{\frac{p}{n+p}}}{\langle x, N(x)\rangle^{\frac{n(p-1)}{n+p}}} d \mathcal{H}^{n-1}=a s_{p}(K)
$$

$$
\begin{aligned}
& \mathcal{W}_{m, k}^{p}(K)= \\
& \int_{\partial K}\langle x, N(x)\rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\
i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}} d \mathcal{H}^{n-1}
\end{aligned}
$$

Special cases: $\frac{n}{n+p}=I \in \mathbb{N}$

Corollary $\left(p=\frac{n(1-l)}{l}, I \in \mathbb{N}\right)$
Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Then

$$
a s_{\frac{n(1-1)}{l}}\left(K+t B_{2}^{n}\right)=\sum_{k=0}^{n(2 /-1)} \mathcal{V}_{k}^{p}(K) t^{k}
$$

Note that

- $\mathcal{V}_{0}^{p}(K)=a s_{p}(K)$ (true for arbitrary p);
- $\mathcal{V}_{n(2 l-1)}^{p}(K)=a s_{p}\left(B_{2}^{n}\right)$.

Special cases: $p= \pm \infty$

Recall that dual quermassintegrals of order i are

$$
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(u)^{n-i} d \sigma(u)
$$

Then

$$
\mathcal{V}_{k}^{ \pm \infty}(K)=\binom{-n}{k} \widetilde{W}_{-k}\left(K^{\circ}\right)=(-1)^{k}\binom{n+k-1}{k} \widetilde{W}_{-k}\left(K^{\circ}\right)
$$

Corollary (Steiner formula for Minkowski outer parallel body of the dual theory, $p= \pm \infty$)
Let K be a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Let $t \in \mathbb{R}$ be such that $0 \leq t<\min _{u \in S^{n-1}} h_{K}(u)$. Then

$$
a s_{ \pm \infty}\left(K+t B_{2}^{n}\right)=n \operatorname{Vol}_{n}\left(\left(K+t B_{2}^{n}\right)^{\circ}\right)=n \sum_{i=0}^{\infty}\binom{-n}{i} \widetilde{W}_{-i}\left(K^{\circ}\right) t^{i}
$$

Euclidean ball

According to the L_{p} Steiner formula (with $K=B_{2}^{n}$) we get

$$
a s_{p}\left(B_{2}^{n}+t B_{2}^{n}\right)=\sum_{k=0}^{\infty} \mathcal{V}_{k}^{p}\left(B_{2}^{n}\right) t^{k}
$$

On the other hand,

$$
\begin{aligned}
a s_{p}\left((1+t) B_{2}^{n}\right) & =\left[a s_{p}(\lambda K)=\lambda^{n \frac{n-p}{n+p}} a s_{p}(K)\right]=(1+t)^{n \frac{n-p}{n+p}} a s_{p}\left(B_{2}^{n}\right) \\
& =\left[a s_{p}\left(B_{2}^{n}\right)=\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right)\right]=(1+t)^{n \frac{n-p}{n+p}} \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \\
& =\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \sum_{k=0}^{\infty}\binom{n \frac{n-p}{n+p}}{k} t^{k},
\end{aligned}
$$

and by definition

$$
\mathcal{V}_{k}^{p}\left(B_{2}^{n}\right)=\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}}
$$

Euclidean ball

According to the L_{p} Steiner formula (with $K=B_{2}^{n}$) we get

$$
a s_{p}\left(B_{2}^{n}+t B_{2}^{n}\right)=\sum_{k=0}^{\infty} \mathcal{V}_{k}^{p}\left(B_{2}^{n}\right) t^{k}
$$

On the other hand,

$$
\begin{aligned}
a s_{p}\left((1+t) B_{2}^{n}\right) & =\left[a s_{p}(\lambda K)=\lambda^{n \frac{n-p}{n+p}} a s_{p}(K)\right]=(1+t)^{n \frac{n-p}{n+p}} a s_{p}\left(B_{2}^{n}\right) \\
& =\left[a s_{p}\left(B_{2}^{n}\right)=\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right)\right]=(1+t)^{n \frac{n-p}{n+p}} \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \\
& =\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \sum_{k=0}^{\infty}\binom{n \frac{n-p}{n+p}}{k} t^{k},
\end{aligned}
$$

and by definition

$$
\mathcal{V}_{k}^{p}\left(B_{2}^{n}\right)=\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) \underbrace{\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m}}_{C(n, p, k)} \underbrace{}_{\begin{array}{c}
i_{1}, \ldots, i_{n-1} \geq 0 \\
i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m
\end{array}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} .
$$

Euclidean ball

Thus,

$$
\binom{n \frac{n-p}{n+p}}{k} \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right)=\mathcal{V}_{k}^{p}\left(B_{2}^{n}\right)=C(n, p, k) \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right)
$$

where

$$
C(n, p, k)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \sum_{\substack{i_{1}, \ldots, i_{n}-1 \geq 0 \\ i_{1}+2 i_{1}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} .
$$

Corollary

Let $p \in \mathbb{R}, p \neq-n$. Then

$$
\binom{n \frac{n-p}{n+p}}{k}=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}}
$$

Homogeneity

Theorem

Let K is a convex body in \mathbb{R}^{n}. Then for all $p \in \mathbb{R}, p \neq-n$, and for all $k \in \mathbb{N}$, $\mathcal{V}_{k}^{p}(K)$ (and $\mathcal{W}_{m, k}^{p}(K)$) are homogeneous of degree $n \frac{n-p}{n+p}-k$.

Remark. When K is C_{+}^{2}, we have

$$
a s_{p}\left(\lambda K+t B_{2}^{n}\right)=a s_{p}\left(\lambda\left(K+\frac{t}{\lambda} B_{2}^{n}\right)\right)=\lambda^{n \frac{n-p}{n+p}} a s_{p}\left(K+\frac{t}{\lambda} B_{2}^{n}\right)=\sum_{k=0}^{\infty} \lambda^{n \frac{n-p}{n+p}-k} \mathcal{V}_{k}^{p}(K) t^{k}
$$

On the other hand, we get

$$
a s_{p}(\lambda K+t B)=\sum_{k=0}^{\infty} \mathcal{V}_{k}^{p}(\lambda K) t^{k}
$$

Thus,

$$
\mathcal{V}_{k}^{p}(\lambda K)=\lambda^{n \frac{n-p}{n+p}-k} \mathcal{V}_{k}^{p}(K)
$$

Homogeneity

Proof.

Proposition

Let $g: \partial K \rightarrow \mathbb{R}$ an integrable function, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ an invertible, linear map. Then

$$
\int_{\partial K} g(x) d \mathcal{H}^{n-1}(x)=|\operatorname{det}(T)|^{-1} \int_{\partial T(K)}\left\|T^{-1 t}\left(N_{K}\left(T^{-1}(y)\right)\right)\right\|^{-1} g\left(T^{-1}(y)\right) d \mathcal{H}^{n-1}(x)
$$

and

$$
\left\langle T^{-1}(y,) N_{K}\left(T^{-1} y\right)\right\rangle=\left\langle y, N_{T(K)}(y)\right\rangle\left\|T^{-1 t}\left(N_{K}\left(T^{-1}(y)\right)\right)\right\|
$$

for all $y \in \partial T(K)$.

Applying this proposition with $T=\lambda / d$, and using that for any $y \in \partial(\lambda K)$,

$$
H_{j}(y)=\frac{H_{j}\left(T^{-1} y\right)}{\lambda^{j}}
$$

Homogeneity

Proof.

$$
\begin{aligned}
\mathcal{W}_{m, k}^{p}(K) & =\lambda^{k-n \frac{n-p}{n+p}} \int_{\partial(\lambda K)}\left\langle y, N_{\lambda K}(y)\right\rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}}(y) \\
& \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\
i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(y) d \mathcal{H}^{n-1}(y) \\
= & \lambda^{k-n \frac{n-p}{n+p}} \mathcal{W}_{m, k}^{p}(\lambda K)
\end{aligned}
$$

Therefore,

$$
\mathcal{V}_{k}^{p}(\lambda K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(\lambda K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \lambda^{k-n \frac{n-p}{n+p}} \mathcal{W}_{m, k}^{p}(K)=\lambda^{k-n \frac{n-p}{n+p}} \mathcal{V}_{k}^{p}(K)
$$

Invariance

Theorem

Let K is a convex body in \mathbb{R}^{n}. Then for all $p \in \mathbb{R}, p \neq-n$, and for all $k \in \mathbb{N}, \mathcal{V}_{k}^{p}(K)$ (and $\mathcal{W}_{m, k}^{p}(K)$) are invariant under rotations and reflections.
When $p=1, \mathcal{V}_{k}^{1}(K)$ (and $\mathcal{W}_{k, k}(K)$) are also invariant under translations.

Proof.

If T is a rotation or a reflection, then

- $|\operatorname{det} T|=1$;
- $\left\|T^{-1 t}\left(N_{K}\left(T^{-1}(y)\right)\right)\right\|=\left\|N_{K}\left(T^{-1}(y)\right)\right\|=1$;
- $\left\{H_{j}(y): y \in \partial T(K)\right\}=\left\{H_{j}(x): x \in \partial K\right\}$ for all $1 \leq j \leq n-1$.

Applying the previous proposition, we get

$$
\mathcal{W}_{m, k}^{p}(K)=\mathcal{W}_{m, k}^{p}(T(K))
$$

Thus,

$$
\mathcal{V}_{k}^{p}(K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(K)=\sum_{m=0}^{k}\binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m, k}^{p}(T(K))=\mathcal{V}_{m}^{p}(T(K))
$$

Valuation

Theorem

Let K is a convex body in \mathbb{R}^{n}. Then for $p \geq 0$ and $p<-n$, and for all $k \in \mathbb{N}, m \in \mathbb{N}$, $\mathcal{W}_{m, k}^{p}$ are valuations. Moreover, \mathcal{V}_{k}^{p} are also valuations.

Remark. (when K is C_{+}^{2})
Let K and L be convex bodies in \mathbb{R}^{n} such that $K \cup L$ is a convex body. We need to show that

$$
\begin{equation*}
\mathcal{V}_{k}^{p}(K \cup L)+\mathcal{V}_{k}^{p}(K \cap L)=\mathcal{V}_{k}^{p}(K)+\mathcal{V}_{k}^{p}(L) \tag{1}
\end{equation*}
$$

Using the fact that L_{p} affine surface area is a valuation,

$$
\begin{gathered}
a s_{p}\left(\left(K+t B_{2}^{n}\right) \cup\left(L+t B_{2}^{n}\right)\right)+a s_{p}\left(\left(K+t B_{2}^{n}\right) \cap\left(L+t B_{2}^{n}\right)\right)=a s_{p}\left(K+t B_{2}^{n}\right)+a s_{p}\left(L+t B_{2}^{n}\right), \\
\left(K+t B_{2}^{n}\right) \cup\left(L+t B_{2}^{n}\right)=(K \cup L)+t B_{2}^{n} \text { and }\left(K+t B_{2}^{n}\right) \cap\left(L+t B_{2}^{n}\right)=(K \cap L)+t B_{2}^{n}
\end{gathered}
$$

we get

$$
a s_{p}\left(K \cup L+t B_{2}^{n}\right)+a s_{p}\left(K \cap L+t B_{2}^{n}\right)=a s_{p}\left(K+t B_{2}^{n}\right)+a s_{p}\left(L+t B_{2}^{n}\right)
$$

After applying L_{p} Steiner formula for each term and collecting coefficients, we get (1).

Valuation: $p=1$

Theorem

Let K is a convex body in \mathbb{R}^{n}. Then for all $k \in \mathbb{N}, m \in \mathbb{N}, \mathcal{V}_{k}^{1}=\mathcal{W}_{k, k}$ are valuations.

We want to show that for convex bodies K and L in \mathbb{R}^{n} such that $K \cup L$ is a convex body,

$$
\mathcal{W}_{k, k}(K \cup L)+\mathcal{W}_{k, k}(K \cap L)=\mathcal{W}_{k, k}(K)+\mathcal{W}_{k, k}(L)
$$

Note that

$$
\mathcal{W}_{k, k}(K)=\int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=k}} c(n, 1, i(k)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(x) d \mathcal{H}^{n-1}(x)
$$

is a sum of (up to some constants) integrals of the form

$$
\int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \prod_{i=1}^{j} k_{i_{j}}^{\alpha_{j}}(x) d \mathcal{H}^{n-1}(x)
$$

Valuation: $p=1$

Theorem

Let K be a convex body in \mathbb{R}^{n}. For all $1 \leq i_{1}, \ldots, i_{j} \leq n-1$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} \geq 0$,

$$
\int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \prod_{i=1}^{j} k_{i j}^{\alpha_{j}}(x) d \mathcal{H}^{n-1}(x)
$$

is a valuation.

Let K and L be convex bodies in \mathbb{R}^{n} such that $K \cup L$ is a convex body. We decompose a body using a strategy that was introduced by Schütt:

$$
\begin{aligned}
\partial(K \cup L) & =\{\partial K \cap \partial L\} \cup\left\{\partial K \cap L^{c}\right\} \cup\left\{K^{c} \cap \partial L\right\} \\
\partial(K \cap L) & =\{\partial K \cap \partial L\} \cup\{\partial K \cap \operatorname{int}(L)\} \cup\{\operatorname{int}(K) \cap \partial L\} \\
\partial K & =\{\partial K \cap \partial L\} \cup\left\{\partial K \cap L^{c}\right\} \cup\{\partial K \cap \operatorname{int}(L)\} \\
\partial L & =\{\partial K \cap \partial L\} \cup\left\{\partial L \cap K^{c}\right\} \cup\{\partial L \cap \operatorname{int}(K)\} .
\end{aligned}
$$

Valuation: $p=1$

Let K and L be convex bodies in \mathbb{R}^{n} such that $K \cup L$ is a convex body. We decompose

$$
\begin{aligned}
\partial(K \cup L) & =\{\partial K \cap \partial L\} \cup\left\{\partial K \cap L^{c}\right\} \cup\left\{K^{c} \cap \partial L\right\} \\
\partial(K \cap L) & =\{\partial K \cap \partial L\} \cup\{\partial K \cap \operatorname{int}(L)\} \cup\{\operatorname{int}(K) \cap \partial L\} \\
\partial K & =\{\partial K \cap \partial L\} \cup\left\{\partial K \cap L^{c}\right\} \cup\{\partial K \cap \operatorname{int}(L)\} \\
\partial L & =\{\partial K \cap \partial L\} \cup\left\{\partial L \cap K^{c}\right\} \cup\{\partial L \cap \operatorname{int}(K)\} .
\end{aligned}
$$

We also note that for all $x \in \partial K \cap \partial L$, and for all $\alpha \geq 0$ where the principal curvatures $k_{j}(\partial(K \cup L), x), k_{j}(\partial(K \cap L), x), k_{j}(K, x)$ and $k_{j}(L, x)$ exist for all $1 \leq i_{1}, \ldots, i_{j} \leq n-1$,

$$
\begin{aligned}
& H_{n-1}(\partial(K \cup L), x)^{\frac{1}{n+1}} k_{j}(\partial(K \cup L), x)^{\alpha}= \\
= & \min \left\{H_{n-1}(K, x)^{\frac{1}{n+1}} k_{j}(K, x)^{\alpha}, H_{n-1}(L, x)^{\frac{1}{n+1}} k_{j}(L, x)^{\alpha}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{n-1}(\partial(K \cap L), x)^{\frac{1}{n+1}} k_{j}(\partial(K \cap L), x)^{\alpha}= \\
= & \max \left\{H_{n-1}(K, x)^{\frac{1}{n+1}} k_{j}(K, x)^{\alpha}, H_{n-1}(L, x)^{\frac{1}{n+1}} k_{j}(L, x)^{\alpha}\right\} .
\end{aligned}
$$

Continuity: general case

- $p \geq 1$: $\quad a s_{p}(K)$ is upper semi continuous (Ludwig, Lutwak);
- $0 \leq p<1$: $\quad a s_{p}(K)$ is upper semi continuous (Ludwig, Hug);
- $-n<p<0: \quad a s_{p}(K)$ is lower semi continuous (Ludwig).

Question: are L_{p}-Steiner quermassintegrals \mathcal{V}_{k}^{p} and L_{p} Steiner coefficients $\mathcal{W}_{m, k}^{p}$ (upper or lower semi) continuous?

Continuity: general case

- $p \geq 1$: $\quad a s_{p}(K)$ is upper semi continuous (Ludwig, Lutwak);
- $0 \leq p<1$: $\quad a s_{p}(K)$ is upper semi continuous (Ludwig, Hug);
- $-n<p<0$: $a_{p}(K)$ is lower semi continuous (Ludwig).

Question: are L_{p}-Steiner quermassintegrals \mathcal{V}_{k}^{p} and L_{p} Steiner coefficients $\mathcal{W}_{m, k}^{p}$ (upper or lower semi) continuous?

Proposition

Let $p \neq-n$ and let $k \geq 1$. Then \mathcal{V}_{k}^{p} are in general neither lower semi continuous nor upper semi continuous.

Continuity: $p=1$

Proposition

Let $k \geq 1$. Then $\mathcal{V}_{k}^{1}=\mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Continuity: $p=1$

Proposition

Let $k \geq 1$. Then $\mathcal{V}_{k}^{1}=\mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies $K_{I}, I \in \mathbb{N}$:

$$
K_{l}=\left(1-\frac{1}{l}\right) B_{\infty}^{n}+\frac{1}{l} B_{2}^{n},
$$

where $B_{\infty}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$ and B_{2}^{n} is the Euclidean ball. Then $K_{l} \rightarrow B_{\infty}^{n}$ in Hausdorff metric.

Continuity: $p=1$

Proposition

Let $k \geq 1$. Then $\mathcal{V}_{k}^{1}=\mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies $K_{l}, I \in \mathbb{N}$:

$$
K_{l}=\left(1-\frac{1}{l}\right) B_{\infty}^{n}+\frac{1}{l} B_{2}^{n},
$$

where $B_{\infty}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$ and B_{2}^{n} is the Euclidean ball. Then $K_{l} \rightarrow B_{\infty}^{n}$ in Hausdorff metric.

Since $\mathcal{W}_{k, k}\left(B_{\infty}^{n}\right)=0$,

$$
\mathcal{W}_{k, k}\left(K_{l}\right)=\int_{\partial K_{l}} H_{n-1}^{\frac{1}{n+1}} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\ i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=k}} c(n, 1, i(k)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(x) d \mathcal{H}^{n-1}(x)
$$

Continuity: $p=1$

Proposition

Let $k \geq 1$. Then $\mathcal{V}_{k}^{1}=\mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies $K_{l}, I \in \mathbb{N}$:

$$
K_{l}=\left(1-\frac{1}{l}\right) B_{\infty}^{n}+\frac{1}{l} B_{2}^{n},
$$

where $B_{\infty}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$ and B_{2}^{n} is the Euclidean ball. Then $K_{l} \rightarrow B_{\infty}^{n}$ in Hausdorff metric.
We denote by $B_{2}^{n}\left(x_{0}, r\right)$ the Euclidean ball with center at x_{0} and radius r.
Since $\mathcal{W}_{k, k}\left(B_{\infty}^{n}\right)=0$,

$$
\begin{aligned}
\mathcal{W}_{k, k}\left(K_{l}\right)= & \int_{\partial B_{2}^{n}\left(0, \frac{1}{l}\right)} H_{n-1}^{\frac{1}{n+1}}
\end{aligned} \sum_{\substack{i_{1}, \ldots, i_{n-1} \geq 0 \\
i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=k}} c(n, 1, i(k)) \prod_{j=1}^{n-1}\binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(x) d \mathcal{H}^{n-1}(x) .
$$

Continuity: $p=1$

Therefore,

$$
\mathcal{W}_{k, k}\left(K_{l}\right)=I^{k-n \frac{n-1}{n+1}} \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) C(n, 1, k)
$$

where

$$
C(n, 1, k)=\binom{n \frac{n-1}{n+1}}{k}
$$

- If $k \geq n$ and
- if $k-n+1$ is even, then $C(n, 1, k)>0$ which implies that

$$
\mathcal{W}_{k, k}\left(K_{l}\right)=l^{k-n \frac{n-1}{n+1}} \operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) C(n, 1, k) \rightarrow \infty \quad \text { as } I \rightarrow \infty
$$

Thus, $\mathcal{W}_{k, k}$ is not upper semi continuous (since $\mathcal{W}_{k, k}\left(B_{\infty}^{n}\right)=0$).
If we take a sequence of polytopes P_{l} that converge to B_{2}^{n} in Hausdorff metric, then $\mathcal{W}_{k, k}\left(P_{l}\right)=0$, but $\mathcal{W}_{k, k}\left(B_{2}^{n}\right)=\operatorname{Vol}_{n-1}\left(\partial B_{2}^{n}\right) C(n, 1, k)>0$, so $\mathcal{W}_{k, k}$ is not lower semi continuous.

- if $k-n+1$ is odd, then then $C(n, 1, k)<0$ which similarly implies that $\mathcal{W}_{k, k}$ is not upper or lower semi continuous.
- if $k \leq n-1, \mathcal{W}_{k, k}$ is not lower semi continuous since $C(n, 1, k)>0$ and not upper semi continuous.

Continuity: mixed affine surface areas

For all $p \neq-n$ and all $s \in \mathbb{R}$, the s-th mixed L_{p} affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, $\mathrm{Ye}(2010)$ for all $p \neq-n$ and all s) is defined as

$$
a s_{p, s}(K)=\int_{\partial K} H_{n-1}(x)^{\frac{s+p}{n+p}}\langle x, N(x)\rangle^{(1-p) \frac{n-s}{n+p}} d \mathcal{H}^{n-1}(x)
$$

Continuity: mixed affine surface areas

For all $p \neq-n$ and all $s \in \mathbb{R}$, the s-th mixed L_{p} affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, Ye (2010) for all $p \neq-n$ and all s) is defined as

$$
a s_{p, s}(K)=\int_{\partial K} H_{n-1}(x)^{\frac{s+p}{n+p}}\langle x, N(x)\rangle^{(1-p) \frac{n-s}{n+p}} d \mathcal{H}^{n-1}(x)
$$

Special cases of the L_{p} Steiner coefficients:

- $k=m=I(n-1), I \in \mathbb{N}$ and $p=1$

$$
\mathcal{V}_{l(n-1)}^{1}(K)=\mathcal{W}_{l(n-1), l(n-1)}(K)=\binom{\frac{n}{n+1}}{l} a s_{1, /(n+1)}(K)
$$

- $m=0$

$$
\mathcal{W}_{0, k}^{p}(K)=\int_{\partial K}\langle x, N(x)\rangle^{-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} d \mathcal{H}^{n-1}(x)=a s_{p+\frac{k}{n}(n+p),-k}(K)
$$

Continuity: mixed affine surface areas

For all $p \neq-n$ and all $s \in \mathbb{R}$, the s-th mixed L_{p} affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, Ye (2010) for all $p \neq-n$ and all s) is defined as

$$
a s_{p, s}(K)=\int_{\partial K} H_{n-1}(x)^{\frac{s+p}{n+p}}\langle x, N(x)\rangle^{(1-p) \frac{n-s}{n+p}} d \mathcal{H}^{n-1}(x) .
$$

Special cases of the L_{p} Steiner coefficients:

- $k=m=I(n-1), I \in \mathbb{N}$ and $p=1$

$$
\mathcal{V}_{l(n-1)}^{1}(K)=\mathcal{W}_{l(n-1), l(n-1)}(K)=\binom{\frac{n}{n+1}}{l} a s_{1, l(n+1)}(K)
$$

- $m=0$

$$
\mathcal{W}_{0, k}^{p}(K)=\int_{\partial K}\langle x, N(x)\rangle^{-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} d \mathcal{H}^{n-1}(x)=a s_{p+\frac{k}{n}(n+p),-k}(K)
$$

Theorem

For $p \geq 0, \mathcal{W}_{0, k}^{p}=a s_{p+\frac{k}{n}(n+p),-k}$ are upper semi continuous $n \frac{n-p}{n+p}-k$ homogeneous valuations that are invariant under rotation and reflections.

Thank you!

