L_p Steiner formula and its coefficients

Kateryna Tatarko (joint work with Elisabeth Werner)

University of Waterloo

Phenomena in High Dimension

æ

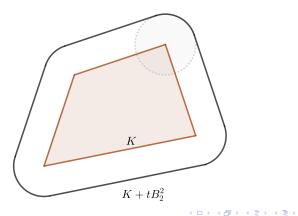
イロト 不同下 不同下 不同下

Classical Steiner formula

For a convex body K and $t \ge 0$, the classical Steiner formula is

$$\operatorname{Vol}_{n}(K+tB_{2}^{n})=\sum_{i=0}^{n}\binom{n}{i}W_{i}(K)t^{i}=\sum_{i=0}^{n}\operatorname{Vol}_{n-i}(B_{2}^{n-i})V_{i}(K)t^{n-i},$$

where B_2^n is a Euclidean unit ball in \mathbb{R}^n .



æ

For a convex body K and $t \ge 0$,

$$\operatorname{Vol}_n(K+tB_2^n) = \sum_{i=0}^n \binom{n}{i} W_i(K)t^i = \sum_{i=0}^n \operatorname{Vol}_{n-i}(B_2^{n-i}) V_i(K)t^{n-i}.$$

The coefficients $W_i(K)$ and $V_i(K)$ are called quermassintegrals and intrinsic volumes, respectively.

In particular,

$$\begin{split} & \mathcal{W}_0(\mathcal{K}) = \operatorname{Vol}_n(\mathcal{K}) & \text{the volume} \\ & \mathcal{W}_1(\mathcal{K}) = \frac{1}{n} \operatorname{Vol}_{n-1}(\partial \mathcal{K}) & \text{the surface area} \\ & \mathcal{W}_n(\mathcal{K}) = \operatorname{Vol}_n(B_2^n) & \text{the volume of the unit ball} \end{split}$$

æ

Steiner formula of the dual Brunn Minkowski theory

The radial function of a star body K is defined by

$$\rho_{\mathcal{K}}(u) = \max\{\lambda \ge 0 \mid \lambda u \in \mathcal{K}\} \text{ for any } u \in S^{n-1}.$$

For star bodies K and L, the radial sum $\alpha K + \beta L$ is the star body with the radial function

$$\rho_{\alpha \kappa \widetilde{+} \beta L}(u) = \alpha \rho_{\kappa}(u) + \beta \rho_{L}(u).$$

æ

・ロト ・四ト ・ヨト ・ヨト

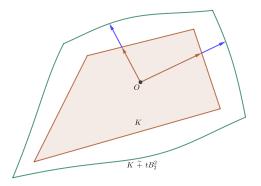
Steiner formula of the dual Brunn Minkowski theory

The radial function of a star body K is defined by

$$\rho_{K}(u) = \max\{\lambda \geq 0 \mid \lambda u \in K\} \text{ for any } u \in S^{n-1}.$$

For star bodies K and L, the radial sum $\alpha K + \beta L$ is the star body with the radial function

$$\rho_{\alpha K \widetilde{+} \beta L}(u) = \alpha \rho_{K}(u) + \beta \rho_{L}(u).$$



For a star body K and $t \ge 0$, we have that

$$\operatorname{Vol}_n(K + tB_2^n) = \sum_{i=0}^n \binom{n}{i} \widetilde{W_i}(K)t^i,$$

where $\tilde{+}$ is a radial addition. The coefficients $\widetilde{W}_i(K)$ are called dual quermassintegrals that were introduced by Lutwak.

э

For a star body K and $t \ge 0$, we have that

$$\operatorname{Vol}_n(K + tB_2^n) = \sum_{i=0}^n \binom{n}{i} \widetilde{W_i}(K)t^i,$$

where $\tilde{+}$ is a radial addition. The coefficients $\widetilde{W}_i(K)$ are called dual quermassintegrals that were introduced by Lutwak.

Dual quermassintegrals of order i can be written as

$$\widetilde{W}_i(K) = \frac{1}{n} \int_{S^{n-1}} \rho_K(u)^{n-i} d\sigma(u).$$

For real $p \neq -n$, the L_p affine surface area is defined as

$$\mathsf{as}_{\mathsf{p}}(\mathsf{K}) = \int\limits_{\partial \mathsf{K}} \frac{H_{n-1}(x)^{\frac{p}{n+p}}}{\langle x, \mathsf{N}(x) \rangle^{\frac{n(p-1)}{n+p}}} d\mathcal{H}^{n-1}(x),$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and N(x) is the outer normal vector at x.

For real $p \neq -n$, the L_p affine surface area is defined as

$$as_{P}(K) = \int_{\partial K} \frac{H_{n-1}(x)^{\frac{p}{n+p}}}{\langle x, N(x) \rangle^{\frac{n(p-1)}{n+p}}} d\mathcal{H}^{n-1}(x),$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and N(x) is the outer normal vector at x.

When p = 1, we recover the classical affine surface area $as_1(K)$:

$$as_1(K) = \int_{\partial K} H_{n-1}(x)^{\frac{1}{n+1}} d\mathcal{H}^{n-1}(x).$$

<ロ> <四> <四> <四> <三</p>

For real $p \neq -n$, the L_p affine surface area is defined as

$$as_{p}(K) = \int_{\partial K} \frac{H_{n-1}(x)^{\frac{n}{n+p}}}{\langle x, N(x) \rangle^{\frac{n(p-1)}{n+p}}} d\mathcal{H}^{n-1}(x),$$

where $H_{n-1}(x)$ is the Gauss curvature of K at $x \in \partial K$ and N(x) is the outer normal vector at x.

When p = 1, we recover the classical affine surface area $as_1(K)$:

$$as_1(K) = \int_{\partial K} H_{n-1}(x)^{\frac{1}{n+1}} d\mathcal{H}^{n-1}(x).$$

For p = 0,

$$as_0(K) = \int_{\partial K} \langle x, N(x) \rangle \, d\mathcal{H}^{n-1}(x) = n \operatorname{Vol}_n(K).$$

If the boundary of K is sufficiently smooth, then

$$as_{p}(K) = \int\limits_{S^{n-1}} f_{K}(u)^{\frac{n}{n+p}} h_{K}(u)^{\frac{n(1-p)}{n+p}} d\sigma(u),$$

where $f_{\mathcal{K}}(u)$ is the curvature function, i.e. $f_{\mathcal{K}}(u)$ is the reciprocal of $H_{n-1}(x)$ at $x \in \partial \mathcal{K}$ that has u as outer normal, and $h_{\mathcal{K}}(u)$ is the support function of \mathcal{K} .

If the boundary of K is sufficiently smooth, then

$$as_{p}(K) = \int\limits_{S^{n-1}} f_{K}(u)^{\frac{n}{n+p}} h_{K}(u)^{\frac{n(1-p)}{n+p}} d\sigma(u),$$

where $f_{\kappa}(u)$ is the curvature function, i.e. $f_{\kappa}(u)$ is the reciprocal of $H_{n-1}(x)$ at $x \in \partial K$ that has u as outer normal, and $h_{\kappa}(u)$ is the support function of K.

For $p = \pm \infty$

$$\mathsf{as}_{\pm\infty}(\mathsf{K}) = \int\limits_{\mathsf{S}^{n-1}} \frac{1}{h_{\mathsf{K}}(u)^n} d\sigma(u) = n \operatorname{Vol}_n(\mathsf{K}^\circ),$$

where $K^{\circ} = \{y \in \mathbb{R}^n, \langle x, y \rangle \leq 1, \forall x \in K\}$ is the polar body of K.

3

Theorem (T., Werner, 2019)

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Let $t \in \mathbb{R}$ be such that $0 \le t < \min_{u \in S^{n-1}} h_K(u)$. For all $p \in \mathbb{R}$, $p \ne -n$,

$$\mathsf{as}_p(\mathcal{K}+t\mathcal{B}_2^n) = \sum_{k=0}^{\infty} \left[\sum_{m=0}^k {n(1-
ho) \choose n+
ho \choose k-m} \mathcal{W}_{m,k}^p(\mathcal{K})
ight] t^k = \sum_{k=0}^{\infty} \mathcal{V}_k^p(\mathcal{K}) t^k$$

In particular,

$$\mathsf{as}_1(K+tB_2^n)=\sum_{k=0}^\infty \mathcal{W}_{k,k}(K)\,t^k=\sum_{k=0}^\infty \mathcal{V}_k^1(K)\,t^k.$$

The coefficients $\mathcal{W}_{m,k}^{p}(K)$ and $\mathcal{V}_{k}^{p}(K)$ are called L_{p} Steiner coefficients and L_{p} -Steiner quermassintegrals.

The *j*-th normalized elementary symmetric functions of the principal curvatures are

$$H_j = \binom{n-1}{j}^{-1} \sum_{1 \le i_1 < \cdots < i_j \le n-1} k_{i_1} \cdots k_{i_j}$$

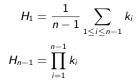
for j = 1, ..., n - 1 and $H_0 = 1$.

æ

The *j*-th normalized elementary symmetric functions of the principal curvatures are

$$H_j = \binom{n-1}{j}^{-1} \sum_{1 \le i_1 < \cdots < i_j \le n-1} k_{i_1} \cdots k_{i_j}$$

for j = 1, ..., n - 1 and $H_0 = 1$.



the mean curvature

the Gauss curvature

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coefficients in L_p Steiner formula

For a general convex body K, the L_p Steiner coefficients are defined as

$$\int_{\partial K} \langle x, N(x) \rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\ i_1+2i_2+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_j} H_j^{i_j} d\mathcal{H}^{n-1}$$

where

 $\mathcal{W}^{p}_{m,k}(K) =$

$$c(n,p,i(m)) = \binom{\frac{n}{n+p}}{i_1+\cdots+i_{n-1}} \binom{i_1+\cdots+i_{n-1}}{i_1,i_2,\ldots,i_{n-1}}$$

such that the sequence $i(m) = \{i_j\}_{j=0}^{n-1}$ satisfies $i_1 + 2i_2 + ... + (n-1)i_{n-1} = m$.

Coefficients in L_p Steiner formula

For a general convex body K, the L_p Steiner coefficients are defined as

$$\int_{\partial K} \langle x, N(x) \rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\ i_1+2i_2+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_j} H_j^{i_j} d\mathcal{H}^{n-1}$$

where

 $\mathcal{W}_{m,k}^{p}(K) =$

$$c(n,p,i(m)) = \binom{n}{i_1+\cdots+i_{n-1}} \binom{i_1+\cdots+i_{n-1}}{i_1,i_2,\ldots,i_{n-1}}$$

such that the sequence $i(m) = \{i_j\}_{j=0}^{n-1}$ satisfies $i_1 + 2i_2 + \ldots + (n-1)i_{n-1} = m$.

In analogy to the classical Steiner formula, for a general convex body K in \mathbb{R}^n the L_p -Steiner quermassintegrals are defined as

$$\mathcal{V}_{k}^{p}(\mathcal{K}) = \sum_{m=0}^{k} {\binom{n(1-p)}{n+p} \choose k-m} \mathcal{W}_{m,k}^{p}(\mathcal{K})$$

<ロ> <四> <四> <四> <三</p>

If K is C_{+}^{2} , then

$$\mathcal{V}_{k}^{0}(\mathcal{K}) = n \binom{n}{k} W_{k}(\mathcal{K}) = \binom{n}{k} \int_{\partial \mathcal{K}} H_{k-1} d\mathcal{H}^{n-1}$$

In particular,

$$\mathcal{V}_0^0(K) = n \operatorname{Vol}_n(K) = as_0(K).$$

Corollary (Classical Steiner formula, p = 0)

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_0(K+tB_2^n)=\sum_{i=0}^n \binom{n}{i}W_i(K) t^i.$$

æ

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\,\,t^k.$$

Note that

• $\mathcal{V}_0^p(K) = as_p(K)$ (true for arbitrary p):

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\,\,t^k.$$

Note that

•
$$\mathcal{V}_0^p(K) = as_p(K)$$
 (true for arbitrary p):

$$\mathcal{V}_{k}^{p}(\mathcal{K}) = \sum_{m=0}^{k} {\binom{n(1-p)}{n+p} \choose k-m} \mathcal{W}_{m,k}^{p}(\mathcal{K})$$

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\,\,t^k.$$

Note that

•
$$\mathcal{V}_0^p(K) = as_p(K)$$
 (true for arbitrary p):

$$k = 0: \quad \mathcal{V}_0^p(\mathcal{K}) = \sum_{m=0}^0 \left(\frac{\frac{n(1-p)}{n+p}}{0-m}\right) \mathcal{W}_{m,0}^p(\mathcal{K})$$

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\,\,t^k.$$

Note that

•
$$\mathcal{V}_0^p(\mathcal{K}) = as_p(\mathcal{K})$$
 (true for arbitrary p):

$$k = 0: \quad \mathcal{V}_0^p(\mathcal{K}) \stackrel{m=0}{=} \begin{pmatrix} \frac{n(1-p)}{n+p} \\ 0 \end{pmatrix} \mathcal{W}_{0,0}^p(\mathcal{K})$$

Special cases:
$$\frac{n}{n+p} = l \in \mathbb{N}$$

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\ t^k.$$

Note that

•
$$\mathcal{V}_0^p(K) = as_p(K)$$
 (true for arbitrary p):

$$k = 0$$
: $\mathcal{V}_0^p(K) = \mathcal{W}_{0,0}^p(K) =$

$$\mathcal{W}_{m,k}^{p}(K) = \\ \int_{\partial K} \langle x, N(x) \rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\ i_1+2i_2+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} {\binom{n-1}{j}}^{i_j} H_j^{i_j} \, d\mathcal{H}^{n-1}$$

æ

Special cases:
$$\frac{n}{n+p} = I \in \mathbb{N}$$

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{\frac{n(1-l)}{T}}(K+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(K)\ t^k.$$

Note that

•
$$\mathcal{V}_0^p(K) = as_p(K)$$
 (true for arbitrary p):

$$k = 0: \quad \mathcal{V}_0^p(K) = \mathcal{W}_{0,0}^p(K) = \int_{\partial K} \frac{H_{n-1}^{\frac{p}{p+p}}}{\langle x, N(x) \rangle^{\frac{n(p-1)}{n+p}}} \, d\mathcal{H}^{n-1} = as_p(K)$$

$$\mathcal{W}_{m,k}^{p}(K) = \int_{\partial K} \langle x, N(x) \rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} \sum_{\substack{i_{1}, \dots, i_{n-1} \ge 0\\ i_{1}+2i_{2}+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}} \, d\mathcal{H}^{n-1}$$

Kateryna Tatarko (joint work with Elisabeth Werner)

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Then

$$as_{rac{n(1-l)}{l}}(\mathcal{K}+tB_2^n)=\sum_{k=0}^{n(2l-1)}\mathcal{V}_k^p(\mathcal{K})\ t^k.$$

Note that

- $\mathcal{V}_0^p(K) = as_p(K)$ (true for arbitrary p);
- $\mathcal{V}_{n(2l-1)}^{p}(K) = as_{p}(B_{2}^{n}).$

Special cases: $p = \pm \infty$

Recall that dual quermassintegrals of order i are

$$\widetilde{W_i}(K) = rac{1}{n} \int\limits_{S^{n-1}}
ho_K(u)^{n-i} d\sigma(u).$$

Then

$$\mathcal{V}_{k}^{\pm\infty}(\mathcal{K}) = \binom{-n}{k} \widetilde{W}_{-k}(\mathcal{K}^{\circ}) = (-1)^{k} \binom{n+k-1}{k} \widetilde{W}_{-k}(\mathcal{K}^{\circ})$$

Corollary (Steiner formula for Minkowski outer parallel body of the dual theory, $p = \pm \infty$)

Let K be a convex body in \mathbb{R}^n that is C^2_+ . Let $t \in \mathbb{R}$ be such that $0 \le t < \min_{u \in S^{n-1}} h_K(u)$. Then

$$as_{\pm\infty}(K+tB_2^n) = n \operatorname{Vol}_n\Big((K+tB_2^n)^\circ\Big) = n \sum_{i=0}^{\infty} {\binom{-n}{i}} \widetilde{W}_{-i}(K^\circ) t^i.$$

æ

Euclidean ball

According to the L_p Steiner formula (with $K = B_2^n$) we get

$$as_p(B_2^n+tB_2^n)=\sum_{k=0}^\infty \mathcal{V}_k^p(B_2^n)t^k.$$

On the other hand,

$$\begin{aligned} \mathsf{as}_p((1+t)B_2^n) &= \left[\mathsf{as}_p(\lambda K) = \lambda^{n\frac{n-p}{n+p}} \mathsf{as}_p(K)\right] = (1+t)^{n\frac{n-p}{n+p}} \mathsf{as}_p(B_2^n) \\ &= \left[\mathsf{as}_p(B_2^n) = \operatorname{Vol}_{n-1}(\partial B_2^n)\right] = (1+t)^{n\frac{n-p}{n+p}} \operatorname{Vol}_{n-1}(\partial B_2^n) \\ &= \operatorname{Vol}_{n-1}(\partial B_2^n) \sum_{k=0}^{\infty} \binom{n\frac{n-p}{n+p}}{k} t^k, \end{aligned}$$

and by definition

$$\mathcal{V}_{k}^{p}(B_{2}^{n}) = \operatorname{Vol}_{n-1}(\partial B_{2}^{n}) \sum_{m=0}^{k} {\binom{n(1-p)}{n+p}} \sum_{\substack{i_{1}, \dots, i_{n-1} \geq 0\\ i_{1}+2i_{2}+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} {\binom{n-1}{j}}^{i_{j}}.$$

æ

Euclidean ball

According to the L_p Steiner formula (with $K = B_2^n$) we get

$$as_p(B_2^n+tB_2^n)=\sum_{k=0}^\infty \mathcal{V}_k^p(B_2^n)t^k.$$

On the other hand,

$$\begin{aligned} \mathsf{as}_{p}((1+t)B_{2}^{n}) &= \left[\mathsf{as}_{p}(\lambda K) = \lambda^{n\frac{n-\rho}{n+\rho}} \mathsf{as}_{p}(K)\right] = (1+t)^{n\frac{n-\rho}{n+\rho}} \mathsf{as}_{p}(B_{2}^{n}) \\ &= \left[\mathsf{as}_{p}(B_{2}^{n}) = \operatorname{Vol}_{n-1}(\partial B_{2}^{n})\right] = (1+t)^{n\frac{n-\rho}{n+\rho}} \operatorname{Vol}_{n-1}(\partial B_{2}^{n}) \\ &= \operatorname{Vol}_{n-1}(\partial B_{2}^{n}) \sum_{k=0}^{\infty} \binom{n\frac{n-\rho}{n+\rho}}{k} t^{k}, \end{aligned}$$

and by definition

$$\mathcal{V}_{k}^{p}(B_{2}^{n}) = \operatorname{Vol}_{n-1}(\partial B_{2}^{n}) \sum_{m=0}^{k} \binom{\frac{n(1-p)}{n+p}}{k-m} \sum_{\substack{i_{1},\dots,i_{n-1}\geq 0\\i_{1}+2i_{2}+\dots+(n-1)i_{n-1}=m}} c(n,p,i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_{j}}.$$

Thus,

$$\binom{n\frac{n-p}{n+p}}{k} \operatorname{Vol}_{n-1}(\partial B_2^n) = \mathcal{V}_k^p(B_2^n) = C(n, p, k) \operatorname{Vol}_{n-1}(\partial B_2^n)$$

where

$$C(n,p,k) = \sum_{m=0}^{k} {\binom{n(1-p)}{n+p}} \sum_{\substack{i_1,\dots,i_{n-1}\geq 0\\i_1+2i_2+\dots+(n-1)i_{n-1}=m}} c(n,p,i(m)) \prod_{j=1}^{n-1} {\binom{n-1}{j}}^{i_j}.$$

Corollary

Let
$$p \in \mathbb{R}$$
, $p \neq -n$. Then
 $\binom{n \frac{n-p}{n+p}}{k} = \sum_{m=0}^{k} \binom{n(1-p)}{k-m} \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\i_1+2i_2+\dots+(n-1)i_{n-1}=m}} c(n, p, i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_j}.$

э.

Let K is a convex body in \mathbb{R}^n . Then for all $p \in \mathbb{R}$, $p \neq -n$, and for all $k \in \mathbb{N}$, $\mathcal{V}_k^p(K)$ (and $\mathcal{W}_{m,k}^p(K)$) are homogeneous of degree $n \frac{n-p}{n+p} - k$.

Remark. When K is C_+^2 , we have

$$as_{p}(\lambda K + tB_{2}^{n}) = as_{p}\left(\lambda\left(K + \frac{t}{\lambda}B_{2}^{n}\right)\right) = \lambda^{n\frac{n-p}{n+p}}as_{p}\left(K + \frac{t}{\lambda}B_{2}^{n}\right) = \sum_{k=0}^{\infty}\lambda^{n\frac{n-p}{n+p}-k}\mathcal{V}_{k}^{p}(K)t^{k}.$$

On the other hand, we get

$$\mathsf{as}_p(\lambda K + tB) = \sum_{k=0}^\infty \mathcal{V}_k^p(\lambda K) t^k.$$

Thus,

$$\mathcal{V}_k^p(\lambda K) = \lambda^{n\frac{n-p}{n+p}-k} \mathcal{V}_k^p(K).$$

イロン イ団 とく ヨン イヨン

Proof.

Proposition

Let $g: \partial K \to \mathbb{R}$ an integrable function, and $T: \mathbb{R}^n \to \mathbb{R}^n$ an invertible, linear map. Then

$$\int_{\partial K} g(x) \, d\mathcal{H}^{n-1}(x) = |\det(T)|^{-1} \, \int_{\partial T(K)} \|T^{-1t}(N_{K}(T^{-1}(y)))\|^{-1} g(T^{-1}(y)) \, d\mathcal{H}^{n-1}(x)$$

and

$$\langle T^{-1}(y,)N_{\mathcal{K}}(T^{-1}y)\rangle = \langle y,N_{\mathcal{T}(\mathcal{K})}(y)\rangle \| T^{-1t}(N_{\mathcal{K}}(T^{-1}(y)))\|$$
for all $y \in \partial T(\mathcal{K})$.

Applying this proposition with $T = \lambda Id$, and using that for any $y \in \partial(\lambda K)$,

$$H_j(y)=\frac{H_j(T^{-1}y)}{\lambda^j},$$

э

イロン イ団 とく ヨン イヨン

Proof.

$$\mathcal{W}_{m,k}^{p}(K) = \lambda^{k-n\frac{n-p}{n+p}} \int_{\partial(\lambda K)} \langle y, N_{\lambda K}(y) \rangle^{m-k+\frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}}(y)$$

$$\sum_{\substack{i_{1},\dots,i_{n-1}\geq 0\\i_{1}+2i_{2}+\dots+(n-1)i_{n-1}=m}} c(n,p,i(m)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(y) \ d\mathcal{H}^{n-1}(y)$$

$$= \lambda^{k-n\frac{n-p}{n+p}} \mathcal{W}_{m,k}^{p}(\lambda K).$$

Therefore,

$$\mathcal{V}_{k}^{p}(\lambda K) = \sum_{m=0}^{k} \binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m,k}^{p}(\lambda K) = \sum_{m=0}^{k} \binom{\frac{n(1-p)}{n+p}}{k-m} \lambda^{k-n\frac{n-p}{n+p}} \mathcal{W}_{m,k}^{p}(K) = \lambda^{k-n\frac{n-p}{n+p}} \mathcal{V}_{k}^{p}(K).$$

2

Invariance

Theorem

Let K is a convex body in \mathbb{R}^n . Then for all $p \in \mathbb{R}$, $p \neq -n$, and for all $k \in \mathbb{N}$, $\mathcal{V}_k^p(K)$ (and $\mathcal{W}_{m,k}^p(K)$) are invariant under rotations and reflections. When p = 1, $\mathcal{V}_k^1(K)$ (and $\mathcal{W}_{k,k}(K)$) are also invariant under translations.

Proof.

If T is a rotation or a reflection, then

•
$$|\det T| = 1;$$

•
$$||T^{-1t}(N_{\mathcal{K}}(T^{-1}(y)))|| = ||N_{\mathcal{K}}(T^{-1}(y))|| = 1;$$

• $\{H_j(y): y \in \partial T(K)\} = \{H_j(x): x \in \partial K\}$ for all $1 \le j \le n-1$.

Applying the previous proposition, we get

$$\mathcal{W}^{p}_{m, k}(K) = \mathcal{W}^{p}_{m, k}(T(K)).$$

Thus,

$$\mathcal{V}_{k}^{p}(K) = \sum_{m=0}^{k} \binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m,k}^{p}(K) = \sum_{m=0}^{k} \binom{\frac{n(1-p)}{n+p}}{k-m} \mathcal{W}_{m,k}^{p}(T(K)) = \mathcal{V}_{m}^{p}(T(K)).$$

Let K is a convex body in \mathbb{R}^n . Then for $p \ge 0$ and p < -n, and for all $k \in \mathbb{N}$, $m \in \mathbb{N}$, \mathcal{W}_{m-k}^p are valuations. Moreover, \mathcal{V}_{k}^p are also valuations.

Remark. (when K is C_{+}^{2})

Let K and L be convex bodies in \mathbb{R}^n such that $K \cup L$ is a convex body. We need to show that $\mathcal{V}_k^p(K \cup L) + \mathcal{V}_k^p(K \cap L) = \mathcal{V}_k^p(K) + \mathcal{V}_k^p(L).$ (1)

Using the fact that L_p affine surface area is a valuation,

 $as_{p}((K + tB_{2}^{n}) \cup (L + tB_{2}^{n})) + as_{p}((K + tB_{2}^{n}) \cap (L + tB_{2}^{n})) = as_{p}(K + tB_{2}^{n}) + as_{p}(L + tB_{2}^{n}),$

 $(K + tB_2^n) \cup (L + tB_2^n) = (K \cup L) + tB_2^n$ and $(K + tB_2^n) \cap (L + tB_2^n) = (K \cap L) + tB_2^n$

we get

$$as_p(K \cup L + tB_2^n) + as_p(K \cap L + tB_2^n) = as_p(K + tB_2^n) + as_p(L + tB_2^n).$$

After applying L_p Steiner formula for each term and collecting coefficients, we get (1).

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let K is a convex body in \mathbb{R}^n . Then for all $k \in \mathbb{N}$, $m \in \mathbb{N}$, $\mathcal{V}_k^1 = \mathcal{W}_{k,k}$ are valuations.

We want to show that for convex bodies K and L in \mathbb{R}^n such that $K \cup L$ is a convex body,

$$\mathcal{W}_{k,\,k}(K\cup L) + \mathcal{W}_{k,\,k}(K\cap L) = \mathcal{W}_{k,\,k}(K) + \mathcal{W}_{k,\,k}(L).$$

Note that

$$\mathcal{W}_{k,k}(K) = \int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\ i_1+2i_2+\dots+(n-1)i_{n-1}=k}} c(n,1,i(k)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_j} H_j^{i_j}(x) \ d\mathcal{H}^{n-1}(x)$$

is a sum of (up to some constants) integrals of the form

$$\int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \prod_{i=1}^{j} k_{i_j}^{\alpha_j}(x) d\mathcal{H}^{n-1}(x).$$

э

イロン イ団 とく ヨン イヨン

Let K be a convex body in \mathbb{R}^n . For all $1 \leq i_1, \ldots, i_j \leq n-1$ and $\alpha_1, \alpha_2, \ldots, \alpha_j \geq 0$,

$$\int_{\partial K} H_{n-1}^{\frac{1}{n+1}}(x) \prod_{i=1}^{j} k_{ij}^{\alpha_j}(x) \, d\mathcal{H}^{n-1}(x)$$

is a valuation.

Let K and L be convex bodies in \mathbb{R}^n such that $K \cup L$ is a convex body. We decompose a body using a strategy that was introduced by Schütt:

$$\partial(K \cup L) = \{\partial K \cap \partial L\} \cup \{\partial K \cap L^c\} \cup \{K^c \cap \partial L\}$$

$$\partial(K \cap L) = \{\partial K \cap \partial L\} \cup \{\partial K \cap \operatorname{int}(L)\} \cup \{\operatorname{int}(K) \cap \partial L\}$$

$$\partial K = \{\partial K \cap \partial L\} \cup \{\partial K \cap L^c\} \cup \{\partial K \cap \operatorname{int}(L)\}$$

$$\partial L = \{\partial K \cap \partial L\} \cup \{\partial L \cap K^c\} \cup \{\partial L \cap \operatorname{int}(K)\}.$$

э

イロン イ団 とく ヨン イヨン

Let K and L be convex bodies in \mathbb{R}^n such that $K \cup L$ is a convex body. We decompose

$$\partial(K \cup L) = \{\partial K \cap \partial L\} \cup \{\partial K \cap L^c\} \cup \{K^c \cap \partial L\}$$

$$\partial(K \cap L) = \{\partial K \cap \partial L\} \cup \{\partial K \cap \operatorname{int}(L)\} \cup \{\operatorname{int}(K) \cap \partial L\}$$

$$\partial K = \{\partial K \cap \partial L\} \cup \{\partial K \cap L^c\} \cup \{\partial K \cap \operatorname{int}(L)\}$$

$$\partial L = \{\partial K \cap \partial L\} \cup \{\partial L \cap K^c\} \cup \{\partial L \cap \operatorname{int}(K)\}.$$

We also note that for all $x \in \partial K \cap \partial L$, and for all $\alpha \ge 0$ where the principal curvatures $k_j(\partial(K \cup L), x), k_j(\partial(K \cap L), x), k_j(K, x)$ and $k_j(L, x)$ exist for all $1 \le i_1, \ldots, i_j \le n-1$,

$$H_{n-1}(\partial(K \cup L), x)^{\frac{1}{n+1}} k_j(\partial(K \cup L), x)^{\alpha} =$$

= min{ $H_{n-1}(K, x)^{\frac{1}{n+1}} k_j(K, x)^{\alpha}, H_{n-1}(L, x)^{\frac{1}{n+1}} k_j(L, x)^{\alpha}$ }

and

$$H_{n-1}(\partial(K \cap L), x)^{\frac{1}{n+1}} k_j(\partial(K \cap L), x)^{\alpha} =$$

= max{ $H_{n-1}(K, x)^{\frac{1}{n+1}} k_j(K, x)^{\alpha}, H_{n-1}(L, x)^{\frac{1}{n+1}} k_j(L, x)^{\alpha}$ }.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $p \ge 1$: $as_p(K)$ is upper semi continuous (Ludwig, Lutwak);
- $0 \le p < 1$: $as_p(K)$ is upper semi continuous (Ludwig, Hug);
- $-n : <math>as_p(K)$ is lower semi continuous (Ludwig).

Question: are L_p -Steiner quermassintegrals \mathcal{V}_k^p and L_p Steiner coefficients $\mathcal{W}_{m,k}^p$ (upper or lower semi) continuous?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $p \ge 1$: $as_p(K)$ is upper semi continuous (Ludwig, Lutwak);
- $0 \le p < 1$: $as_p(K)$ is upper semi continuous (Ludwig, Hug);
- $-n : <math>as_p(K)$ is lower semi continuous (Ludwig).

Question: are L_p -Steiner quermassintegrals \mathcal{V}_k^p and L_p Steiner coefficients $\mathcal{W}_{m,k}^p$ (upper or lower semi) continuous?

Proposition

Let $p \neq -n$ and let $k \geq 1$. Then \mathcal{V}_k^p are in general neither lower semi continuous nor upper semi continuous.

<ロ> <四> <四> <四> <三</p>

Let $k \ge 1$. Then $\mathcal{V}_k^1 = \mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

2

イロト イヨト イヨト イヨト

Let $k \ge 1$. Then $\mathcal{V}_k^1 = \mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies K_l , $l \in \mathbb{N}$:

$$\mathcal{K}_l = \left(1 - rac{1}{l}
ight) \mathcal{B}_\infty^n + rac{1}{l} \mathcal{B}_2^n,$$

where $B_{\infty}^n = \{x \in \mathbb{R}^n : ||x||_{\infty} \le 1\}$ and B_2^n is the Euclidean ball. Then $K_l \to B_{\infty}^n$ in Hausdorff metric.

э

イロン イ団 とく ヨン イヨン

Let $k \ge 1$. Then $\mathcal{V}_k^1 = \mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies K_l , $l \in \mathbb{N}$:

$$\mathcal{K}_l = \left(1 - rac{1}{l}
ight) B_\infty^n + rac{1}{l} B_2^n,$$

where $B_{\infty}^n = \{x \in \mathbb{R}^n : ||x||_{\infty} \le 1\}$ and B_2^n is the Euclidean ball. Then $K_l \to B_{\infty}^n$ in Hausdorff metric.

Since $\mathcal{W}_{k,k}(B_{\infty}^n) = 0$,

$$\mathcal{W}_{k,k}(K_l) = \int_{\partial K_l} H_{n-1}^{\frac{1}{n+1}} \sum_{\substack{i_1, \dots, i_{n-1} \ge 0\\ i_1+2i_2+\dots+(n-1)i_{n-1}=k}} c(n,1,i(k)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_j} H_j^{i_j}(x) \ d\mathcal{H}^{n-1}(x)$$

2

イロト イヨト イヨト イヨト

Let $k \ge 1$. Then $\mathcal{V}_k^1 = \mathcal{W}_{k, k}$ are neither lower semi continuous nor upper semi continuous.

Consider convex bodies K_I , $I \in \mathbb{N}$:

$$\mathcal{K}_l = \left(1 - \frac{1}{l}
ight) B_\infty^n + \frac{1}{l} B_2^n,$$

where $B_{\infty}^n = \{x \in \mathbb{R}^n : ||x||_{\infty} \le 1\}$ and B_2^n is the Euclidean ball. Then $K_l \to B_{\infty}^n$ in Hausdorff metric.

We denote by $B_2^n(x_0, r)$ the Euclidean ball with center at x_0 and radius r.

Since $\mathcal{W}_{k,k}(B_{\infty}^n) = 0$,

$$\mathcal{W}_{k,k}(K_{l}) = \int_{\partial B_{2}^{n}(0,\frac{1}{l})} H_{n-1}^{\frac{1}{n+1}} \sum_{\substack{i_{1},\dots,i_{n-1}\geq 0\\i_{1}+2i_{2}+\dots+(n-1)i_{n-1}=k}} c(n,1,i(k)) \prod_{j=1}^{n-1} \binom{n-1}{j}^{i_{j}} H_{j}^{i_{j}}(x) \ d\mathcal{H}^{n-1}(x)$$
$$= \mathcal{W}_{k,k} \left(B_{2}^{n}\left(0,\frac{1}{l}\right) \right) = l^{k-n\frac{n-1}{n+1}} \operatorname{Vol}_{n-1} \left(\partial B_{2}^{n} \right) C(n,1,k).$$

Continuity: p = 1

Therefore,

$$\mathcal{W}_{k,k}(K_l) = l^{k-n\frac{n-1}{n+1}} \operatorname{Vol}_{n-1} \left(\partial B_2^n\right) C(n,1,k),$$

where

$$C(n,1,k) = \binom{n\frac{n-1}{n+1}}{k}.$$

• If $k \ge n$ and

• if k - n + 1 is even, then C(n, 1, k) > 0 which implies that

$$\mathcal{W}_{k,\ k}(K_l) = l^{k-nrac{n-1}{n+1}} \operatorname{Vol}_{n-1} \left(\partial B_2^n\right) \mathcal{C}(n,1,k) o \infty \qquad ext{as } l o \infty.$$

Thus, $\mathcal{W}_{k,k}$ is not upper semi continuous (since $\mathcal{W}_{k,k}(B_{\infty}^n) = 0$).

If we take a sequence of polytopes P_l that converge to B_2^n in Hausdorff metric, then $\mathcal{W}_{k, k}(P_l) = 0$, but $\mathcal{W}_{k, k}(B_2^n) = \operatorname{Vol}_{n-1} (\partial B_2^n) C(n, 1, k) > 0$, so $\mathcal{W}_{k, k}$ is not lower semi continuous.

- if k n + 1 is odd, then then C(n, 1, k) < 0 which similarly implies that $W_{k, k}$ is not upper or lower semi continuous.
- if $k \le n-1$, $\mathcal{W}_{k,k}$ is not lower semi continuous since C(n,1,k) > 0 and not upper semi continuous.

Continuity: mixed affine surface areas

For all $p \neq -n$ and all $s \in \mathbb{R}$, the s-th mixed L_p affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, Ye (2010) for all $p \neq -n$ and all s) is defined as

$$\mathsf{as}_{p,\,s}(\mathsf{K}) = \int\limits_{\partial \mathsf{K}} \mathsf{H}_{n-1}(x)^{\frac{s+p}{n+p}} \langle x, \mathsf{N}(x) \rangle^{(1-p)\frac{n-s}{n+p}} d\mathcal{H}^{n-1}(x).$$

イロト イヨト イヨト イヨト

Continuity: mixed affine surface areas

For all $p \neq -n$ and all $s \in \mathbb{R}$, the s-th mixed L_p affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, Ye (2010) for all $p \neq -n$ and all s) is defined as

$$\mathsf{as}_{p,\,s}(\mathsf{K}) = \int\limits_{\partial \mathsf{K}} H_{n-1}(x)^{\frac{s+p}{n+p}} \langle x, \mathsf{N}(x) \rangle^{(1-p)\frac{n-s}{n+p}} d\mathcal{H}^{n-1}(x).$$

Special cases of the L_p Steiner coefficients:

•
$$k = m = l(n-1), l \in \mathbb{N} \text{ and } p = 1$$

 $\mathcal{V}_{l(n-1)}^{1}(K) = \mathcal{W}_{l(n-1), l(n-1)}(K) = {\binom{n}{n+1} \choose l} as_{1,l(n+1)}(K).$
• $m = 0$

$$\mathcal{W}^{p}_{0, k}(K) = \int_{\partial K} \langle x, N(x) \rangle^{-k + \frac{n(1-p)}{n+p}} H_{n-1}^{\frac{p}{n+p}} d\mathcal{H}^{n-1}(x) = as_{p + \frac{k}{n}(n+p), -k}(K).$$

イロン イ団 とく ヨン イヨン

Continuity: mixed affine surface areas

For all $p \neq -n$ and all $s \in \mathbb{R}$, the s-th mixed L_p affine surface area of K (Lutwak (1987) for $p \geq 1$ and all $s \in \mathbb{R}$; Werner, Ye (2010) for all $p \neq -n$ and all s) is defined as

$$as_{p,s}(K) = \int_{\partial K} H_{n-1}(x)^{\frac{s+p}{n+p}} \langle x, N(x) \rangle^{(1-p)\frac{n-s}{n+p}} d\mathcal{H}^{n-1}(x).$$

Special cases of the L_p Steiner coefficients:

•
$$k = m = l(n - 1), l \in \mathbb{N} \text{ and } p = 1$$

$$\mathcal{V}_{l(n-1)}^{1}(\mathcal{K}) = \mathcal{W}_{l(n-1), l(n-1)}(\mathcal{K}) = {\binom{n}{n+1} \choose l} as_{1,l(n+1)}(\mathcal{K}).$$

• $m = 0$

$$\mathcal{W}^{p}_{0,k}(K) = \int_{\partial K} \langle x, \mathsf{N}(x) \rangle^{-k + \frac{n(1-p)}{n+p}} H^{\frac{p}{n+p}}_{n-1} d\mathcal{H}^{n-1}(x) = \mathsf{as}_{p + \frac{k}{n}(n+p), -k}(K).$$

Theorem

For $p \ge 0$, $\mathcal{W}_{0,k}^p = as_{p+\frac{k}{n}(n+p),-k}$ are upper semi continuous $n\frac{n-p}{n+p} - k$ homogeneous valuations that are invariant under rotation and reflections.

Thank you!

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶