

Variations on a Theorem by Peter de Jong

Giovanni Peccati (Luxembourg University)

Paris, IHP — June 7th, 2022

* **Topic**: multivariate and functional fluctuations of *U*-statistics.

- In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart & Peccati, 2005; Nourdin & Peccati, 2007–10); Poisson Wiener chaos (Peccati, Solé, Taqqu & Utzet, 2010; Döbler & Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).
- * **Applications:** mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs & geometry of random fields), ...
- * This line of research was anticipated (in 1990!) by **P. de Jong**.

- * **Topic**: multivariate and functional fluctuations of *U*-statistics.
- In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart & Peccati, 2005; Nourdin & Peccati, 2007–10); Poisson Wiener chaos (Peccati, Solé, Taqqu & Utzet, 2010; Döbler & Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).
- * **Applications:** mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs & geometry of random fields), ...
- * This line of research was anticipated (in 1990!) by **P. de Jong**.

- * **Topic**: multivariate and functional fluctuations of *U*-statistics.
- In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart & Peccati, 2005; Nourdin & Peccati, 2007–10); Poisson Wiener chaos (Peccati, Solé, Taqqu & Utzet, 2010; Döbler & Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).
- * **Applications**: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs & geometry of random fields), ...
- * This line of research was anticipated (in 1990!) by **P. de Jong**.

- * **Topic**: multivariate and functional fluctuations of *U*-statistics.
- In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart & Peccati, 2005; Nourdin & Peccati, 2007–10); Poisson Wiener chaos (Peccati, Solé, Taqqu & Utzet, 2010; Döbler & Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).
- * **Applications**: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs & geometry of random fields), ...
- * This line of research was anticipated (in 1990!) by **P. de Jong**.

- * Let $(X_1, ..., X_n)$ be independent random elements with values in (E, \mathcal{E}) .
- ★ For k = 1, ..., n, a (square-integrable) U-statistic of order k is a random variable with the form

$$W = \sum_{1 \le i_1 < \dots < i_k \le n} g_{(i_1, \dots, i_k)}(X_{i_1}, \dots, X_{i_k}),$$

with $g_{(i_1,...,i_k)}: E^k \to \mathbb{R}$ square-integrable.

- * *W* is **symmetric** if the X_i 's are **i.i.d.** and $g_{(i_1,...,i_k)} \equiv g$ is symmetric.
- * W is **degenerate** if

 $\mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k}) \mid X_a : a \in A] = 0,$ r all $A \subsetneqq \{i_1,...,i_k\}.$

- * Let $(X_1, ..., X_n)$ be independent random elements with values in (E, \mathcal{E}) .
- ★ For k = 1, ..., n, a (square-integrable) *U*-statistic of order k is a random variable with the form

$$W = \sum_{1 \le i_1 < \dots < i_k \le n} g_{(i_1, \dots, i_k)}(X_{i_1}, \dots, X_{i_k}),$$

with $g_{(i_1,...,i_k)}: E^k \to \mathbb{R}$ square-integrable.

- * *W* is **symmetric** if the X_i 's are **i.i.d.** and $g_{(i_1,...,i_k)} \equiv g$ is symmetric.
- * W is **degenerate** if

 $\mathbb{E}[g_{(i_1,\dots,i_k)}(X_{i_1},\dots,X_{i_k}) \mid X_a : a \in A] = 0,$ all $A \subsetneqq \{i_1,\dots,i_k\}.$

- * Let $(X_1, ..., X_n)$ be independent random elements with values in (E, \mathcal{E}) .
- ★ For k = 1, ..., n, a (square-integrable) *U*-statistic of order k is a random variable with the form

$$W = \sum_{1 \le i_1 < \dots < i_k \le n} g_{(i_1, \dots, i_k)}(X_{i_1}, \dots, X_{i_k}),$$

with $g_{(i_1,...,i_k)} : E^k \to \mathbb{R}$ square-integrable.

- * *W* is **symmetric** if the X_i 's are **i.i.d.** and $g_{(i_1,...,i_k)} \equiv g$ is symmetric.
- * W is **degenerate** if

 $\mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k}) \mid X_a : a \in A] = 0$ If $A \subsetneqq \{i_1,...,i_k\}.$

- * Let $(X_1, ..., X_n)$ be independent random elements with values in (E, \mathcal{E}) .
- ★ For k = 1, ..., n, a (square-integrable) *U*-statistic of order k is a random variable with the form

$$W = \sum_{1 \le i_1 < \dots < i_k \le n} g_{(i_1, \dots, i_k)}(X_{i_1}, \dots, X_{i_k}),$$

with $g_{(i_1,...,i_k)} : E^k \to \mathbb{R}$ square-integrable.

- * *W* is **symmetric** if the X_i 's are **i.i.d.** and $g_{(i_1,...,i_k)} \equiv g$ is symmetric.
- ★ *W* is **degenerate** if

for

$$\mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k}) | X_a : a \in A] = 0,$$

all $A \subsetneqq \{i_1,...,i_k\}.$

- * Fact: every square-integrable $F = F(X_1, ..., X_n)$ can be uniquely decomposed into a sum of degenerate *U*-statistics of order k = 0, 1, ..., n (Hoeffding decomposition).
- * In the case where *X*₁, ..., *X*_n are centered and real-valued, classical examples of *non-symmetric and degenerate U*-statistics are **homogeneous sums**:

$$W = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{(i_1, \dots, i_k)} X_{i_1} \cdots X_{i_k}, \quad a_{(i_1, \dots, i_k)} \in \mathbb{R}.$$

- * For **Rademacher variables**: "degenerate *U*-statistics of order $k'' \Leftrightarrow$ "homogeneous sums of order $k'' \Leftrightarrow$ "kth Walsh chaos".
- * The **maximal influence** associated with a degenerate W is

$$Inf(W) = \max_{i=1,...,n} \sum_{i \in \{i_1,...,i_k\}} \mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k})^2]$$

- * Fact: every square-integrable $F = F(X_1, ..., X_n)$ can be uniquely decomposed into a sum of degenerate *U*-statistics of order k = 0, 1, ..., n (Hoeffding decomposition).
- ★ In the case where X₁, ..., X_n are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$W = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{(i_1, \dots, i_k)} X_{i_1} \cdots X_{i_k}, \quad a_{(i_1, \dots, i_k)} \in \mathbb{R}.$$

- * For **Rademacher variables**: "degenerate *U*-statistics of order $k'' \Leftrightarrow$ "homogeneous sums of order $k'' \Leftrightarrow$ "kth Walsh chaos".
- * The **maximal influence** associated with a degenerate W is

$$Inf(W) = \max_{i=1,...,n} \sum_{i \in \{i_1,...,i_k\}} \mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k})^2]$$

- * Fact: every square-integrable $F = F(X_1, ..., X_n)$ can be uniquely decomposed into a sum of degenerate *U*-statistics of order k = 0, 1, ..., n (Hoeffding decomposition).
- ★ In the case where X₁,..., X_n are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$W=\sum_{1\leq i_1<\cdots< i_k\leq n}a_{(i_1,\ldots,i_k)}X_{i_1}\cdots X_{i_k}, \quad a_{(i_1,\ldots,i_k)}\in\mathbb{R}.$$

- ★ For **Rademacher variables**: "degenerate *U*-statistics of order $k'' \Leftrightarrow$ "homogeneous sums of order $k'' \Leftrightarrow$ "kth Walsh chaos".
- * The maximal influence associated with a degenerate W is

$$Inf(W) = \max_{i=1,...,n} \sum_{i \in \{i_1,...,i_k\}} \mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k})^2]$$

- * Fact: every square-integrable $F = F(X_1, ..., X_n)$ can be uniquely decomposed into a sum of degenerate *U*-statistics of order k = 0, 1, ..., n (Hoeffding decomposition).
- ★ In the case where X₁,..., X_n are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$W=\sum_{1\leq i_1<\cdots< i_k\leq n}a_{(i_1,\ldots,i_k)}X_{i_1}\cdots X_{i_k}, \quad a_{(i_1,\ldots,i_k)}\in\mathbb{R}.$$

- ★ For **Rademacher variables**: "degenerate *U*-statistics of order $k'' \Leftrightarrow$ "homogeneous sums of order $k'' \Leftrightarrow$ "kth Walsh chaos".
- * The **maximal influence** associated with a degenerate *W* is

$$Inf(W) = \max_{i=1,...,n} \sum_{i \in \{i_1,...,i_k\}} \mathbb{E}[g_{(i_1,...,i_k)}(X_{i_1},...,X_{i_k})^2]$$

MAIN THEME: PETER DE JONG, 1990

JOURNAL OF MULTIVARIATE ANALYSIS 34, 275-289 (1990)

A Central Limit Theorem for Generalized Multilinear Forms

PETER DE JONG

Courseware Europe b.v., Ebbehout 1, 1507 EA Zaandam, The Netherlands

Communicated by the Editors

Let $X_{1,\cdots}, X_i$ be independent random variables and define for each finite subset $I = \{1, \ldots, n\}$ the $a \neq g \neq i$. In this paper $F_i = I_i X_i$ is the measurable random variables W_i are considered, subject to the centering condition $R(W_i, F_i) = 0$ as unless I < I. A central limit theorem is proven for A-homogeneous sums $W(n) = \sum_{A_i \to A_i} W_i$, with var W(n) = 1, where the summation extends over all (I) subsets $I < \{1, \ldots, n\}$ of size $I \mid I = J$ and the normed fourth moment of W(n) lends to 3. Under some extra conditions the condition is also necessary. C is W(n) shows here, here.

1. INTRODUCTION AND SUMMARY

We start with a sketch of the general setting. Consider independent random variables X_1, \dots, X_n on the probability space (Ω, \mathcal{F}, P) . Define for each finite subset $I \subset \{1, \dots, n\}$ the σ -algebra $\mathcal{F}_{I}^{-} = \sigma\{X_i : l \in I\}$ (with \mathcal{F}_{SL} the trivial σ -algebra and let W_i denote an \mathcal{F}_{I}^{-} measurable random variable. (Throughout this paper the random variables W_I may depend on n_i $W_{II} = W_{IL}$ its parameter n will be suppressed where possible.) We assume the random variables W_I to be centered, square integrable, and uncorrelated:

$$EW_I = 0$$
, $EW_I^2 = \sigma_I^2 < \infty$, $EW_I W_J = 0$ if $I \neq J$.

In a beautiful 1990 paper, **Peter de Jong** proved a surprising result for a sequence $\{W_n : n \ge 1\}$ of normalised **degenerate** *U***-statistics**, that is:

If $Inf(W_n) \rightarrow 0$, then W_n verifies a Central Limit Theorem provided

 $\mathbb{E}W_n^4 \to 3 \, (= \mathbb{E}N(0,1)^4).$

MAIN THEME: PETER DE JONG, 1990

JOURNAL OF MULTIVARIATE ANALYSIS 34, 275-289 (1990)

A Central Limit Theorem for Generalized Multilinear Forms

PETER DE JONG

Courseware Europe b.v., Ebbehout 1, 1507 EA Zaandam, The Netherlands

Communicated by the Editors

Let $X_{1,\cdots}, X_i$ be independent random variables and define for each finite subset $I = \{1, \ldots, n\}$ the $a \neq g \neq i$. In this paper $F_i = I_i X_i$ is the measurable random variables W_i are considered, subject to the centering condition $R(W_i, F_i) = 0$ as unless I < I. A central limit theorem is proven for A-homogeneous sums $W(n) = \sum_{A_i \to A_i} W_i$, with var W(n) = 1, where the summation extends over all (I) subsets $I < \{1, \ldots, n\}$ of size $I \mid I = J$ and the normed fourth moment of W(n) lends to 3. Under some extra conditions the condition is also necessary. C is W(n) shows here, here.

1. INTRODUCTION AND SUMMARY

We start with a sketch of the general setting. Consider independent random variables X_1, \dots, X_n on the probability space (Ω, \mathcal{F}, P) . Define for each finite subset $I \subset \{1, \dots, n\}$ the σ -algebra $\mathcal{F}_{I}^{-} = \sigma\{X_i : l \in I\}$ (with \mathcal{F}_{SL} the trivial σ -algebra and let W_i denote an \mathcal{F}_{I}^{-} measurable random variable. (Throughout this paper the random variables W_I may depend on n_i $W_{II} = W_{IL}$ its parameter n will be suppressed where possible.) We assume the random variables W_I to be centered, square integrable, and uncorrelated:

$$EW_I = 0$$
, $EW_I^2 = \sigma_I^2 < \infty$, $EW_I W_J = 0$ if $I \neq J$.

In a beautiful 1990 paper, **Peter de Jong** proved a surprising result for a sequence $\{W_n : n \ge 1\}$ of normalised **degenerate** *U***-statistics**, that is:

If $Inf(W_n) \rightarrow 0$, then W_n verifies a Central Limit Theorem provided

$$\mathbb{E}W_n^4 \to \mathbf{3} \, (= \mathbb{E}N(0,1)^4).$$

- * *Original proof*: **martingale CLT** + (heavy) combinatorial analysis.
- * In Döbler & Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_n = (W_n^{(1)}, ..., W_n^{(d)}), n \ge 1$, be vectors of degenerate *U*statistics such that (i) $\operatorname{Cov}(\mathbf{W}_n) \to \Sigma$, (ii) $\max_i \operatorname{Inf}(W_n^{(i)}) \to 0$, (iii) $\mathbb{E}[(W_n^{(i)})^2(W_n^{(j)})^2] \to \Sigma(i,i)\Sigma(j,j) + 2\Sigma(i,j)^2$. Then, $\mathbf{W}_n \Rightarrow \mathbf{N}_d(0, \Sigma)$ + quantitative bounds.
- * *Combinatorial component of 2016 proofs*: basically, **unchanged since de Jong (1990)**.
- * Careful bookkeeping of constants allows for $d = d_n \to \infty$ as soon as $d_n! \ll \max_{\ell} \operatorname{Inf}(W_n^{(\ell)})^{\alpha}$ (some $\alpha > 0$; *absolutely not sharp*).

- * *Original proof*: **martingale CLT** + (heavy) combinatorial analysis.
- * In Döbler & Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_n = (W_n^{(1)}, ..., W_n^{(d)}), n \ge 1$, be vectors of degenerate Ustatistics such that (i) $\operatorname{Cov}(\mathbf{W}_n) \to \Sigma$, (ii) $\max_i \operatorname{Inf}(W_n^{(i)}) \to 0$, (iii) $\mathbb{E}[(W_n^{(i)})^2(W_n^{(j)})^2] \to \Sigma(i,i)\Sigma(j,j) + 2\Sigma(i,j)^2$. Then, $\mathbf{W}_n \Rightarrow \mathbf{N}_d(0, \Sigma)$ + quantitative bounds.
- * *Combinatorial component of 2016 proofs*: basically, **unchanged since de Jong (1990)**.
- * Careful bookkeeping of constants allows for $d = d_n \to \infty$ as soon as $d_n! \ll \max_{\ell} \operatorname{Inf}(W_n^{(\ell)})^{\alpha}$ (some $\alpha > 0$; *absolutely not sharp*).

- * *Original proof*: **martingale CLT** + (heavy) combinatorial analysis.
- * In Döbler & Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_n = (W_n^{(1)}, ..., W_n^{(d)}), n \ge 1$, be vectors of degenerate Ustatistics such that (i) $\operatorname{Cov}(\mathbf{W}_n) \to \Sigma$, (ii) $\max_i \operatorname{Inf}(W_n^{(i)}) \to 0$, (iii) $\mathbb{E}[(W_n^{(i)})^2(W_n^{(j)})^2] \to \Sigma(i,i)\Sigma(j,j) + 2\Sigma(i,j)^2$. Then, $\mathbf{W}_n \Rightarrow \mathbf{N}_d(0, \Sigma)$ + quantitative bounds.
- * Combinatorial component of 2016 proofs: basically, **unchanged since de Jong (1990)**.
- * Careful bookkeeping of constants allows for $d = d_n \to \infty$ as soon as $d_n! \ll \max_{\ell} \operatorname{Inf}(W_n^{(\ell)})^{\alpha}$ (some $\alpha > 0$; *absolutely not sharp*).

- * *Original proof*: **martingale CLT** + (heavy) combinatorial analysis.
- * In Döbler & Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_n = (W_n^{(1)}, ..., W_n^{(d)}), n \ge 1$, be vectors of degenerate Ustatistics such that (i) $\operatorname{Cov}(\mathbf{W}_n) \to \Sigma$, (ii) $\max_i \operatorname{Inf}(W_n^{(i)}) \to 0$, (iii) $\mathbb{E}[(W_n^{(i)})^2(W_n^{(j)})^2] \to \Sigma(i,i)\Sigma(j,j) + 2\Sigma(i,j)^2$. Then, $\mathbf{W}_n \Rightarrow \mathbf{N}_d(0, \Sigma)$ + quantitative bounds.
- * Combinatorial component of 2016 proofs: basically, unchanged since de Jong (1990).
- ★ Careful bookkeeping of constants allows for $d = d_n \to \infty$ as soon as $d_n! \ll \max_{\ell} \operatorname{Inf}(W_n^{(\ell)})^{\alpha}$ (some $\alpha > 0$; *absolutely not sharp*).

★ Let $\{X_i : i \ge 1\}$ be a sequence of **i.i.d. random elements**.

- ★ Fix $k \ge 2$, and let $g_n : E^k \to \mathbb{R}$ be a sequence of **symmetric**, **square-integrable and degenerate kernels**.
- * The **sequential** *U***-process** associated with g_n is the random function

$$t \mapsto U(g_n; t) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor nt \rfloor} g_n(X_{i_1}, ..., X_{i_k}), \ t \in [0, 1].$$

- * Let $\{X_i : i \ge 1\}$ be a sequence of **i.i.d. random elements**.
- ★ Fix $k \ge 2$, and let $g_n : E^k \to \mathbb{R}$ be a sequence of **symmetric**, **square-integrable and degenerate kernels**.
- * The **sequential** *U***-process** associated with *g_n* is the random function

$$t \mapsto U(g_n; t) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor nt \rfloor} g_n(X_{i_1}, ..., X_{i_k}), \ t \in [0, 1].$$

- * Let $\{X_i : i \ge 1\}$ be a sequence of **i.i.d. random elements**.
- ★ Fix $k \ge 2$, and let $g_n : E^k \to \mathbb{R}$ be a sequence of **symmetric**, **square-integrable and degenerate kernels**.
- * The **sequential** *U***-process** associated with g_n is the random function

$$t \mapsto U(g_n; t) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor nt \rfloor} g_n(X_{i_1}, \dots, X_{i_k}), \ t \in [0, 1].$$

- * Let $\{X_i : i \ge 1\}$ be a sequence of **i.i.d. random elements**.
- ★ Fix $k \ge 2$, and let $g_n : E^k \to \mathbb{R}$ be a sequence of **symmetric**, **square-integrable and degenerate kernels**.
- * The **sequential** *U***-process** associated with g_n is the random function

$$t \mapsto U(g_n; t) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor nt \rfloor} g_n(X_{i_1}, \dots, X_{i_k}), \ t \in [0, 1].$$

STATEMENT (EXECUTIVE SUMMARY)

Döbler, Kasprzak & Peccati (AAP, 2022) Let $\widetilde{U}(g_n; \cdot) := U_n(g_n; \cdot) / \sigma_n$ and $\widetilde{U}_n := U_n / \sigma_n$. Assume that (a) $\operatorname{Inf}(\widetilde{U}_n) \to 0$; (b) $\left| \mathbb{E}[\widetilde{U}_n^4] - 3 \right| \ll n^{-\eta}$ for some $\eta > 0 +$ "technicalities". Then, $\left\{ U(g_n; t) : t \in [0, 1] \right\} \Longrightarrow \left\{ B(t^k) : t \in [0, 1] \right\},$

in D[0,1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators" (ii) A perfectly working multivariate version is also available.

STATEMENT (EXECUTIVE SUMMARY)

Döbler, Kasprzak & Peccati (AAP, 2022) Let $\widetilde{U}(g_n; \cdot) := U_n(g_n; \cdot) / \sigma_n$ and $\widetilde{U}_n := U_n / \sigma_n$. Assume that (a) $\operatorname{Inf}(\widetilde{U}_n) \to 0$; (b) $\left| \mathbb{E}[\widetilde{U}_n^4] - 3 \right| \ll n^{-\eta}$ for some $\eta > 0 +$ "technicalities". Then, $\left\{ U(g_n; t) : t \in [0, 1] \right\} \Longrightarrow \left\{ B(t^k) : t \in [0, 1] \right\},$

in D[0,1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators"

(ii) A perfectly working multivariate version is also available.

STATEMENT (EXECUTIVE SUMMARY)

Döbler, Kasprzak & Peccati (AAP, 2022) Let $\widetilde{U}(g_n; \cdot) := U_n(g_n; \cdot) / \sigma_n$ and $\widetilde{U}_n := U_n / \sigma_n$. Assume that (a) $\operatorname{Inf}(\widetilde{U}_n) \to 0$; (b) $\left| \mathbb{E}[\widetilde{U}_n^4] - 3 \right| \ll n^{-\eta}$ for some $\eta > 0 +$ "technicalities". Then, $\left\{ U(g_n; t) : t \in [0, 1] \right\} \Longrightarrow \left\{ B(t^k) : t \in [0, 1] \right\},$

in D[0,1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators" (ii) A perfectly working multivariate version is also available.

GENERALIZING MILLER AND SEN (1972)

★ Consider a normalized, non-degenerate (centered and symmetric) *U*-process *U_n* on [0, 1], along with its Hoeffding decomposition:

$$U_n(t) = \sum_{1 \le i_1 < i_2 < \dots < i_p \le \lfloor nt \rfloor} G_n(X_{i_1}, \dots, X_{i_p}) = \sum_{k=1}^p U_n^{(k)}(t).$$

Döbler, Kasprzak & Peccati (AAP, 2022) Assume that $Var(U_n^{(k)}(1)) \rightarrow b_k^2$, and that each $U_n^{(k)}$ verifies (an adequate version of) the assumptions of the previous theorem. Then,

$$U_n \Longrightarrow \left\{ \sum_{k=1}^p b_k^2 \times t^{p-k} B_k(t^k), \quad t \in [0,1] \right\},$$

with B_k independent Brownian motions.

GENERALIZING MILLER AND SEN (1972)

★ Consider a normalized, non-degenerate (centered and symmetric) *U*-process *U_n* on [0, 1], along with its Hoeffding decomposition:

$$U_n(t) = \sum_{1 \le i_1 < i_2 < \dots < i_p \le \lfloor nt \rfloor} G_n(X_{i_1}, \dots, X_{i_p}) = \sum_{k=1}^p U_n^{(k)}(t).$$

Döbler, Kasprzak & Peccati (AAP, 2022)

Assume that $\operatorname{Var}(U_n^{(k)}(1)) \to b_k^2$, and that each $U_n^{(k)}$ verifies (an adequate version of) the assumptions of the previous theorem. Then,

$$U_n \Longrightarrow \left\{ \sum_{k=1}^p b_k^2 \times t^{p-k} B_k(t^k), \quad t \in [0,1] \right\},$$

with B_k independent Brownian motions.

★ Let $r_n \downarrow 0$ Consider $X_1, ..., X_n$ i.i.d. uniform points on the unit cube ⊂ \mathbb{R}^d , and connect X_ℓ and X_j if $0 < ||X_\ell - X_j|| < r_n$:

* We are interested in the **changepoint empirical process**

$$S_n(t):=\sum_{1\leq i\leq \lfloor nt
floor\leq n} \mathbf{1}_{\{X_i\sim X_j\}}, \quad t\in [0,1].$$

★ Let $r_n \downarrow 0$ Consider $X_1, ..., X_n$ i.i.d. uniform points on the unit cube ⊂ \mathbb{R}^d , and connect X_ℓ and X_j if $0 < ||X_\ell - X_j|| < r_n$:

* We are interested in the **changepoint empirical process**

$$S_n(t):=\sum_{1\leq i\leq \lfloor nt
floor\leq n} \mathbf{1}_{\{X_i\sim X_j\}}, \quad t\in [0,1].$$

★ Let $r_n \downarrow 0$ Consider $X_1, ..., X_n$ i.i.d. uniform points on the unit cube ⊂ \mathbb{R}^d , and connect X_ℓ and X_i if $0 < ||X_\ell - X_i|| < r_n$:

* We are interested in the changepoint empirical process

$$S_n(t):=\sum_{1\leq i\leq \lfloor nt
floor\leq sn} \mathbf{1}_{\{X_i\sim X_j\}}, \quad t\in [0,1].$$

★ Let $r_n \downarrow 0$ Consider $X_1, ..., X_n$ i.i.d. uniform points on the unit cube ⊂ \mathbb{R}^d , and connect X_ℓ and X_i if $0 < ||X_\ell - X_i|| < r_n$:

* We are interested in the changepoint empirical process

$$S_n(t):=\sum_{1\leq i\leq \lfloor nt
floor\leq n} \mathbf{1}_{\{X_i\sim X_j\}}, \quad t\in [0,1].$$

Döbler, Kasprzak & Peccati (AAP, 2022)

Consider the **sparse regime**: $nr_n^d \to 0$ and $n^2r_n^d \to \infty$. Then, there exists a constant c > 0 (depending on d) such that, setting $\sigma_n^2 := c n^2 r_n^d$, and

$$T_n(t) := \frac{S(n,t) - \mathbb{E}[S(n,t)]}{\sigma_n}, \quad t \in [0,1],$$

one has that, if $n^{2-\delta} \ll r_n^d \ll n^{-1}$ for some $\delta > 0$, then

$$T_n \Longrightarrow \{\sqrt{2} b(t) : t \in [0,1]\},\$$

where b is a standard Brownian bridge. In particular:

$$\arg\max_{t\in[0,1]}(-T_n(t))\Longrightarrow \mathbf{U}_{[0,1]}.$$

Homogenoeus Sums: de Jong & Universality

Nourdin, Peccati & Reinert (AoP, 2010) Let $\mathbf{G} = \{G_i : i \ge 1\}$ be *i.i.d.* N(0, 1). Consider a sequence of normalized homogeneous sums or order $k \ge 2$:

$$Q_n(\mathbf{G}) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} a_{(i_1, \dots, i_k)}^{(n)} G_{i_1} \cdots G_{i_k}, \quad n \ge 1.$$

If $\mathbb{E}Q_n(G)^4 \to 3$, then

$$Q_n(\mathbf{X}) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} a_{(i_1, \dots, i_k)}^{(n)} X_{i_1} \cdots X_{i_k} \Rightarrow N(0, 1),$$

for every sequence $\mathbf{X} := \{X_i : i \ge 1\}$ of independent centered r.v.'s such that $\sup_i \mathbb{E} |X_i|^{2+\epsilon} < \infty$.

Recent applications: Caravenna, Sun & Zygouras (2016++, polymers); Angst & Poly (2021, zeros of random polynomials)

Homogenoeus Sums: de Jong & Universality

Nourdin, Peccati & Reinert (AoP, 2010) Let $\mathbf{G} = \{G_i : i \ge 1\}$ be *i.i.d.* N(0, 1). Consider a sequence of normalized homogeneous sums or order $k \ge 2$:

$$Q_n(\mathbf{G}) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} a_{(i_1, \dots, i_k)}^{(n)} G_{i_1} \cdots G_{i_k}, \quad n \ge 1.$$

If $\mathbb{E}Q_n(G)^4 \to 3$, then

$$Q_n(\mathbf{X}) = \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} a_{(i_1, \dots, i_k)}^{(n)} X_{i_1} \cdots X_{i_k} \Rightarrow N(0, 1),$$

for every sequence $\mathbf{X} := \{X_i : i \ge 1\}$ of independent centered r.v.'s such that $\sup_i \mathbb{E} |X_i|^{2+\epsilon} < \infty$.

Recent applications: Caravenna, Sun & Zygouras (2016++, polymers); Angst & Poly (2021, zeros of random polynomials).

NON-SYMMETRIC STATISTICS

Döbler, Kasprzak & Peccati (PTRF, 2022+)

Consider **sequential** *U***-processes** *associated with normalized non-symmetric U*-*statistics:*

$$t \mapsto U_n(t) := \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor nt \rfloor} g^{(n)}_{(i_1, \dots, i_k)}(X_{i_1}, \dots, X_{i_k}), \ t \in [0, 1].$$

Assume that

- (a) $Inf(U_n(1)) \to 0;$
- (b) $\mathbb{E}[U_n(1)^4] \to 3;$
- (c) $\mathbb{E}[g_{(i_1,...,i_k)}^{(n)}(X_{i_1},...,X_{i_k})^4] \le C\mathbb{E}[g_{(i_1,...,i_k)}^{(n)}(X_{i_1},...,X_{i_k})^2]^2$

Then, $\{U_n\}$ *is relatively compact in* D[0,1] *and every adherent point corresponds to the law of a* **continuous Gaussian process**.

Döbler, Kasprzak & Peccati (PTRF, 2022+)

Let $\mathbf{G} = \{G_i : i \ge 1\}$ be i.i.d. N(0, 1). Consider a sequence of normalized homogeneous *U*-processes:

$$\mathcal{Q}_{\lfloor nt \rfloor}(\mathbf{G}) := \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq \lfloor nt \rfloor} a^{(n)}_{(i_1, \dots, i_k)} G_{i_1} \cdots G_{i_k}, \quad t \in [0, 1].$$

If $Q_{\lfloor nt \rfloor}(\mathbf{G})$ *converges in* D[0, 1] *to a continuous Gaussian process, then the same holds for*

$$\mathcal{Q}_{\lfloor nt \rfloor}(\mathbf{X}) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq \lfloor nt \rfloor} a^{(n)}_{(i_1, \dots, i_k)} X_{i_1} \cdots X_{i_k},$$

for every sequence $\mathbf{X} := \{X_i : i \ge 1\}$ of independent centered r.v.'s such that $\sup_i \mathbb{E}|X_i|^4 < \infty$.

FRACTIONAL PRODUCTS

- * Fix $k \ge 3$, as well as m = 2, ..., k 1.
- * Write $N = n^m$, and let $\varphi : [n]^m \to [N]$ be one-to-one.
- * Consider a **connected** *m***-cover** $S_1, ..., S_k$ of [k], that is: (i) $\cup_i S_i = [k]$, (ii) $|S_i| = m$ and (iii) each index $i \in [k]$ appears in exactly *m* subsets S_i .
- * We define

 $F_N := \{(\varphi(\pi_{S_1}\mathbf{a}), ..., \varphi(\pi_{S_k}\mathbf{a})) : \mathbf{a} \in [n]^k\},\$

and denote by \tilde{F}_N its symmetrization.

* Then \tilde{F}_N is a symmetric subset of $[N]^k$ s.t. $|\tilde{F}_N| \simeq N^{k/m}$ (Fractional Cartesian Product)

Döbler, Kasprzak & Peccati (PTRF, 2022+)

For every sequence $\mathbf{X} := \{X_i : i \ge 1\}$ of independent centered r.v.'s such that $\sup_i \mathbb{E} |X_i|^4 < \infty$, the empirical process

$$Q_{\lfloor Nt \rfloor}(\mathbf{X}) = \frac{1}{|\tilde{F}_N|^{1/2}} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le \lfloor Nt \rfloor} \mathbf{1}_{\{i_1, \dots, i_k\} \in \tilde{F}_N} X_{i_1} \cdots X_{i_k},$$

weakly converges to a multiple of $\{B(t^{k/m}) : t \in [0,1]\}$, where B is a standard Brownian motion (*).

(*) Not achievable by symmetric statistics.

FINAL WORDS

THANK YOU FOR YOUR ATTENTION!