
Variations on a Theorem
by Peter de Jong

Giovanni Peccati (Luxembourg University)

Paris, IHP — June 7th, 2022

1 / 17



INTRODUCTION

? Topic: multivariate and functional fluctuations of U-statistics.

? In the last 15 years: proof of several fourth moment theorems
for sequences of random variables living in eigenspaces of
Markov operators, e.g.: Gaussian Wiener chaos (Nualart &
Peccati, 2005; Nourdin & Peccati, 2007–10); Poisson Wiener chaos
(Peccati, Solé, Taqqu & Utzet, 2010; Döbler & Peccati, 2018); diffusive
Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).

? Applications: mathematical statistics, mathematical physics,
stochastic geometry (random geometric graphs & geometry
of random fields), ...

? This line of research was anticipated (in 1990!) by P. de Jong.
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FRAMEWORK, I

? Let (X1, ..., Xn) be independent random elements with val-
ues in (E, E).

? For k = 1, ..., n, a (square-integrable) U-statistic of order k is
a random variable with the form

W = ∑
1≤i1<···<ik≤n

g(i1,...,ik)(Xi1 , ..., Xik),

with g(i1,...,ik) : Ek → R square-integrable.

? W is symmetric if the Xi’s are i.i.d. and g(i1,...,ik) ≡ g is
symmetric.

? W is degenerate if

E[g(i1,...,ik)(Xi1 , ..., Xik) |Xa : a ∈ A] = 0,

for all A $ {i1, ..., ik}.
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FRAMEWORK, II

? Fact: every square-integrable F = F(X1, ..., Xn) can be uniquely
decomposed into a sum of degenerate U-statistics of order
k = 0, 1, ..., n (Hoeffding decomposition).

? In the case where X1, ..., Xn are centered and real-valued,
classical examples of non-symmetric and degenerate U-statistics
are homogeneous sums:

W = ∑
1≤i1<···<ik≤n

a(i1,...,ik)Xi1 · · ·Xik , a(i1,...,ik) ∈ R.

? For Rademacher variables: “degenerate U-statistics of order
k”⇔ “homogeneous sums of order k”⇔ “kth Walsh chaos”.

? The maximal influence associated with a degenerate W is

Inf(W) = max
i=1,...,n

∑
i∈{i1,...,ik}

E[g(i1,...,ik)(Xi1 , ..., Xik)
2]
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MAIN THEME: PETER DE JONG, 1990

In a beautiful 1990 paper, Pe-
ter de Jong proved a sur-
prising result for a sequence
{Wn : n ≥ 1} of normalised
degenerate U-statistics, that
is:

If Inf(Wn)→ 0, then Wn veri-
fies a Central Limit Theorem
provided

EW4
n → 3 (= EN(0, 1)4).
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REMARKS

? Original proof: martingale CLT + (heavy) combinatorial anal-
ysis.

? In Döbler & Peccati (EJP, 2016) (using Stein’s method): Let
Wn = (W(1)

n , ..., W(d)
n ), n ≥ 1, be vectors of degenerate U-

statistics such that (i) Cov(Wn)→ Σ, (ii) maxi Inf(W(i)
n )→ 0,

(iii) E[(W(i)
n )2(W(j)

n )2]→ Σ(i, i)Σ(j, j) + 2Σ(i, j)2.
Then, Wn ⇒ Nd(0, Σ) + quantitative bounds.

? Combinatorial component of 2016 proofs: basically, unchanged
since de Jong (1990).

? Careful bookkeeping of constants allows for d = dn → ∞ as
soon as dn! � max` Inf(W(`)

n )α (some α > 0; absolutely not
sharp).
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SYMMETRIC U-PROCESSES

? Let {Xi : i ≥ 1} be a sequence of i.i.d. random elements.

? Fix k ≥ 2, and let gn : Ek → R be a sequence of symmetric,
square-integrable and degenerate kernels.

? The sequential U-process associated with gn is the random
function

t 7→ U(gn; t) := ∑
1≤i1<i2<···<ik≤bntc

gn(Xi1 , ..., Xik), t ∈ [0, 1].

? Problem: study the convergence of U(gn; ·) in the Skorohod
space D[0, 1]. We write Un := U(gn; 1), and σ2

n := Var(Un).
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STATEMENT (EXECUTIVE SUMMARY)

Döbler, Kasprzak & Peccati (AAP, 2022)
Let Ũ(gn; ·) := Un(gn; ·)/σn and Ũn := Un/σn. Assume that
(a) Inf(Ũn)→ 0;

(b)
∣∣∣E[Ũ4

n]− 3
∣∣∣� n−η for some η > 0 + “technicalities".

Then,
{U(gn; t) : t ∈ [0, 1]} =⇒ {B(tk) : t ∈ [0, 1]},

in D[0, 1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using “contraction
operators”
(ii) A perfectly working multivariate version is also available.
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n]− 3
∣∣∣� n−η for some η > 0 + “technicalities".

Then,
{U(gn; t) : t ∈ [0, 1]} =⇒ {B(tk) : t ∈ [0, 1]},

in D[0, 1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using “contraction
operators”
(ii) A perfectly working multivariate version is also available.

8 / 17



STATEMENT (EXECUTIVE SUMMARY)

Döbler, Kasprzak & Peccati (AAP, 2022)
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GENERALIZING MILLER AND SEN (1972)

? Consider a normalized, non-degenerate (centered and sym-
metric) U-process Un on [0, 1], along with its Hoeffding de-
composition:

Un(t) = ∑
1≤i1<i2<···<ip≤bntc

Gn(Xi1 , ..., Xip) =
p

∑
k=1

U(k)
n (t).

Döbler, Kasprzak & Peccati (AAP, 2022)
Assume that Var(U(k)

n (1))→ b2
k , and that each U(k)

n verifies (an
adequate version of) the assumptions of the previous theorem. Then,

Un =⇒
{

p

∑
k=1

b2
k × tp−kBk(tk), t ∈ [0, 1]

}
,

with Bk independent Brownian motions.
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EXAMPLE (CHANGEPOINT ANALYSIS)

? Let rn ↓ 0 Consider X1, ..., Xn i.i.d. uniform points on the unit
cube ⊂ Rd, and connect X` and Xj if 0 < ‖X` − Xj‖ < rn:

? We are interested in the changepoint empirical process

Sn(t) := ∑
1≤i≤bntc<j≤n

1{Xi∼Xj}, t ∈ [0, 1].

? Instance of graph-based changepoint detection: see Chen &
Zhang (2015)
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EXAMPLE (CHANGEPOINT ANALYSIS)

Döbler, Kasprzak & Peccati (AAP, 2022)
Consider the sparse regime: nrd

n → 0 and n2rd
n → ∞. Then, there

exists a constant c > 0 (depending on d) such that, setting
σ2

n := c n2rd
n, and

Tn(t) :=
S(n, t)−E[S(n, t)]

σn
, t ∈ [0, 1],

one has that, if n2−δ � rd
n � n−1 for some δ > 0, then

Tn =⇒ {
√

2 b(t) : t ∈ [0, 1]},

where b is a standard Brownian bridge. In particular:

arg max
t∈[0,1]

(−Tn(t)) =⇒ U[0,1].
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HOMOGENOEUS SUMS: DE JONG & UNIVERSALITY

Nourdin, Peccati & Reinert (AoP, 2010)
Let G = {Gi : i ≥ 1} be i.i.d. N(0, 1). Consider a sequence of
normalized homogeneous sums or order k ≥ 2:

Qn(G) := ∑
1≤i1<i2<···ik≤n

a(n)
(i1,...,ik)

Gi1 · · ·Gik , n ≥ 1.

If EQn(G)4 → 3, then

Qn(X) = ∑
1≤i1<i2<···ik≤n

a(n)
(i1,...,ik)

Xi1 · · ·Xik ⇒ N(0, 1),

for every sequence X := {Xi : i ≥ 1} of independent centered r.v.’s
such that supi E|Xi|2+ε < ∞.

Recent applications: Caravenna, Sun & Zygouras (2016++,
polymers); Angst & Poly (2021, zeros of random polynomials).
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NON-SYMMETRIC STATISTICS

Döbler, Kasprzak & Peccati (PTRF, 2022+)
Consider sequential U-processes associated with normalized
non-symmetric U-statistics:

t 7→ Un(t) := ∑
1≤i1<i2<···<ik≤bntc

g(n)
(i1,...,ik)

(Xi1 , ..., Xik), t ∈ [0, 1].

Assume that
(a) Inf(Un(1))→ 0;
(b) E[Un(1)4]→ 3;

(c) E[g(n)
(i1,...,ik)

(Xi1 , ..., Xik)
4] ≤ CE[g(n)

(i1,...,ik)
(Xi1 , ..., Xik)

2]2

Then, {Un} is relatively compact in D[0, 1] and every adherent point
corresponds to the law of a continuous Gaussian process.
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FUNCTIONAL UNIVERSALITY

Döbler, Kasprzak & Peccati (PTRF, 2022+)
Let G = {Gi : i ≥ 1} be i.i.d. N(0, 1). Consider a sequence of
normalized homogeneous U-processes:

Qbntc(G) := ∑
1≤i1<i2<···ik≤bntc

a(n)
(i1,...,ik)

Gi1 · · ·Gik , t ∈ [0, 1].

If Qbntc(G) converges in D[0, 1] to a continuous Gaussian process,
then the same holds for

Qbntc(X) = ∑
1≤i1<i2<···ik≤bntc

a(n)
(i1,...,ik)

Xi1 · · ·Xik ,

for every sequence X := {Xi : i ≥ 1} of independent centered r.v.’s
such that supi E|Xi|4 < ∞.
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FRACTIONAL PRODUCTS

? Fix k ≥ 3, as well as m = 2, ..., k− 1.
? Write N = nm, and let ϕ : [n]m → [N] be one-to-one.
? Consider a connected m-cover S1, ..., Sk of [k], that is: (i)
∪iSi = [k], (ii) |Si| = m and (iii) each index i ∈ [k] appears
in exactly m subsets Si.

? We define

FN := {(ϕ(πS1 a), ..., ϕ(πSk a)) : a ∈ [n]k},

and denote by F̃N its symmetrization.
? Then F̃N is a symmetric subset of [N]k s.t. |F̃N | � Nk/m

(Fractional Cartesian Product)

15 / 17



FRACTIONAL PRODUCTS

Döbler, Kasprzak & Peccati (PTRF, 2022+)
For every sequence X := {Xi : i ≥ 1} of independent centered r.v.’s
such that supi E|Xi|4 < ∞, the empirical process

QbNtc(X) =
1

|F̃N |1/2 ∑
1≤i1<i2<···ik≤bNtc

1{i1,...,ik}∈F̃N
Xi1 · · ·Xik ,

weakly converges to a multiple of {B(tk/m) : t ∈ [0, 1]}, where B is a
standard Brownian motion (*).

(*) Not achievable by symmetric statistics.
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FINAL WORDS

THANK YOU FOR YOUR ATTENTION!
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