Variations on a Theorem by Peter de Jong

Giovanni Peccati (Luxembourg University)

Paris, IHP — June 7th, 2022

INTRODUCTION

* Topic: multivariate and functional fluctuations of U-statistics.
* In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart \& Peccati, 2005; Nourdin \& Peccati, 2007-10); Poisson Wiener chaos (Peccati, Solé, Taqqu \& Utzet, 2010; Döbler \& Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese \& Poly, 2013).
* Applications: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs \& geometry of random fields), ...
* This line of research was anticipated (in 1990!) by P. de Jong.

Introduction

* Topic: multivariate and functional fluctuations of U-statistics.
* In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart \& Peccati, 2005; Nourdin \& Peccati, 2007-10); Poisson Wiener chaos (Peccati, Solé, Taqqu \& Utzet, 2010; Döbler \& Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese \& Poly, 2013).

Applications: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs \& geometry of random fields),

This line of research was anticipated (in 1990!) by P. de Jong.

Introduction

* Topic: multivariate and functional fluctuations of U-statistics.
* In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart \& Peccati, 2005; Nourdin \& Peccati, 2007-10); Poisson Wiener chaos (Peccati, Solé, Taqqu \& Utzet, 2010; Döbler \& Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese \& Poly, 2013).
* Applications: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs \& geometry of random fields), ...
* This line of research was anticipated (in 1990!) by P. de Jong.

Introduction

* Topic: multivariate and functional fluctuations of U-statistics.
* In the last 15 years: proof of several fourth moment theorems for sequences of random variables living in eigenspaces of Markov operators, e.g.: Gaussian Wiener chaos (Nualart \& Peccati, 2005; Nourdin \& Peccati, 2007-10); Poisson Wiener chaos (Peccati, Solé, Taqqu \& Utzet, 2010; Döbler \& Peccati, 2018); diffusive Markov operators (Ledoux, 2010; Azmoodeh, Campese \& Poly, 2013).
* Applications: mathematical statistics, mathematical physics, stochastic geometry (random geometric graphs \& geometry of random fields), ...
\star This line of research was anticipated (in 1990!) by P. de Jong.

FRAMEWORK, I

\star Let $\left(X_{1}, \ldots, X_{n}\right)$ be independent random elements with values in (E, \mathcal{E}).
\star For $k=1, \ldots, n$, a (square-integrable) U-statistic of order k is
a random variable with the form
with $g_{\left(i_{1}, \ldots, i_{k}\right)}: E^{k} \rightarrow \mathbb{R}$ square-integrable.
 symmetric.

* W is degenerate if

$$
\mathbb{E}\left[g_{\left(i_{1}, \ldots, i_{k}\right)}\left(\mathrm{X}_{i_{1}}, \ldots, X_{i_{k}}\right) \mid X_{a}: a \in A\right]=0,
$$

for all $A \varsubsetneqq\left\{i_{1}, \ldots, i_{k}\right\}$.

FRAMEWORK, I

\star Let $\left(X_{1}, \ldots, X_{n}\right)$ be independent random elements with values in (E, \mathcal{E}).
\star For $k=1, \ldots, n$, a (square-integrable) U-statistic of order k is a random variable with the form

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{\left(i_{1}, \ldots, i_{k}\right)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

with $g_{\left(i_{1}, \ldots, i_{k}\right)}: E^{k} \rightarrow \mathbb{R}$ square-integrable.
symmetric.

* W is degenerate if
for all $A \varsubsetneqq\left\{i_{1}, \ldots, i_{k}\right\}$.

FRAMEWORK, I

\star Let $\left(X_{1}, \ldots, X_{n}\right)$ be independent random elements with values in (E, \mathcal{E}).
\star For $k=1, \ldots, n$, a (square-integrable) U-statistic of order k is a random variable with the form

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{\left(i_{1}, \ldots, i_{k}\right)}\left(X_{\left.i_{1}, \ldots, X_{i_{k}}\right),}\right.
$$

with $g_{\left(i_{1}, \ldots, i_{k}\right)}: E^{k} \rightarrow \mathbb{R}$ square-integrable.
$\star W$ is symmetric if the X_{i} 's are i.i.d. and $g_{\left(i_{1}, \ldots, i_{k}\right)} \equiv g$ is symmetric.

* W is degenerate if

for all $A \varsubsetneqq\left\{i_{1}, \ldots, i_{k}\right\}$.

FRAMEWORK, I

\star Let $\left(X_{1}, \ldots, X_{n}\right)$ be independent random elements with values in (E, \mathcal{E}).
\star For $k=1, \ldots, n$, a (square-integrable) U-statistic of order k is a random variable with the form

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{\left(i_{1}, \ldots, i_{k}\right)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right),
$$

with $g_{\left(i_{1}, \ldots, i_{k}\right)}: E^{k} \rightarrow \mathbb{R}$ square-integrable.
$\star W$ is symmetric if the X_{i} 's are i.i.d. and $g_{\left(i_{1}, \ldots, i_{k}\right)} \equiv g$ is symmetric.
$\star W$ is degenerate if

$$
\mathbb{E}\left[g_{\left(i_{1}, \ldots, i_{k}\right)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \mid X_{a}: a \in A\right]=0,
$$

for all $A \varsubsetneqq\left\{i_{1}, \ldots, i_{k}\right\}$.

FRAMEWORK, II

\star Fact: every square-integrable $F=F\left(X_{1}, \ldots, X_{n}\right)$ can be uniquely decomposed into a sum of degenerate U-statistics of order $k=0,1, \ldots, n$ (Hoeffding decomposition).
classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

\star For Rademacher variables: "degenerate U-statistics of order
$k^{\prime \prime} \Leftrightarrow$ "homogeneous sums of order $k^{\prime \prime} \Leftrightarrow$ " k th Walsh chaos". * The maximal influence associated with a degenerate W is

FRAMEWORK, II

\star Fact: every square-integrable $F=F\left(X_{1}, \ldots, X_{n}\right)$ can be uniquely decomposed into a sum of degenerate U-statistics of order $k=0,1, \ldots, n$ (Hoeffding decomposition).
\star In the case where X_{1}, \ldots, X_{n} are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)} X_{i_{1}} \cdots X_{i_{k}}, \quad a_{\left(i_{1}, \ldots, i_{k}\right)} \in \mathbb{R}
$$

\square * The maximal influence associated with a degenerate W is

FRAMEWORK, II

\star Fact: every square-integrable $F=F\left(X_{1}, \ldots, X_{n}\right)$ can be uniquely decomposed into a sum of degenerate U-statistics of order $k=0,1, \ldots, n$ (Hoeffding decomposition).

* In the case where X_{1}, \ldots, X_{n} are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)} X_{i_{1}} \cdots X_{i_{k}}, \quad a_{\left(i_{1}, \ldots, i_{k}\right)} \in \mathbb{R}
$$

^ For Rademacher variables: "degenerate U-statistics of order $k^{\prime \prime} \Leftrightarrow$ "homogeneous sums of order $k^{\prime \prime} \Leftrightarrow$ " k th Walsh chaos".
$\operatorname{Inf}(W)=\max$

FRAMEWORK, II

\star Fact: every square-integrable $F=F\left(X_{1}, \ldots, X_{n}\right)$ can be uniquely decomposed into a sum of degenerate U-statistics of order $k=0,1, \ldots, n$ (Hoeffding decomposition).
\star In the case where X_{1}, \ldots, X_{n} are centered and real-valued, classical examples of non-symmetric and degenerate U-statistics are homogeneous sums:

$$
W=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)} X_{i_{1}} \cdots X_{i_{k}}, \quad a_{\left(i_{1}, \ldots, i_{k}\right)} \in \mathbb{R}
$$

* For Rademacher variables: "degenerate U-statistics of order $k^{\prime \prime} \Leftrightarrow$ "homogeneous sums of order k " \Leftrightarrow " k th Walsh chaos".
* The maximal influence associated with a degenerate W is

$$
\operatorname{Inf}(W)=\max _{i=1, \ldots, n} \sum_{i \in\left\{i_{1}, \ldots, i_{k}\right\}} \mathbb{E}\left[g_{\left(i_{1}, \ldots, i_{k}\right)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)^{2}\right]
$$

Main Theme: Peter de Jong, 1990

journal of multivariate analysis 34, 275-289 (1990)

> A Central Limit Theorem for Generalized Multilinear Forms

Peter de Jong

Courseware Europe b.v., Ebbehout 1, 1507 EA Zaandam, The Netherlands

Communicated by the Editors

Let X_{1}, \ldots, X_{n} be independent random variables and define for each finite subset $I \subset\{1, \ldots, n\}$ the σ-algebra $\mathscr{F}_{\boldsymbol{I}}=\sigma\left\{X_{i}: i \in I\right\}$. In this paper $\bar{F}_{\boldsymbol{r}}$-measurable random variables W_{l} are considered, subject to the centering condition $E\left(W_{l} \mid F_{j}\right)=0$ a.s. variables W_{l} are considered, subject to the centering condition $E\left(W_{l} \mid \mathscr{F}_{j}\right)=0$ a.s.
unless $I \subset J$. A central limit theorem is proven for d-homogeneous sums $W(n)=\sum_{i n-d} W_{l}$, with var $W(n)=1$, where the summation extends over all $\binom{a}{d}$ subsets $I \subset\{1, \ldots, n\}$ of size $|I|=d$, under the condition that the normed fourth moment of $W(n)$ tends to 3 . Under some extra conditions the condition is also necessary. 1990 Academic Press. Inc.

1. Introduction and Summary

We start with a sketch of the general setting. Consider independent random variables X_{1}, \ldots, X_{n} on the probability space (Ω, \mathscr{F}, P). Define for each finite subset $I \subset\{1, \ldots, n\}$ the σ-algebra $\mathscr{F}_{I}=\sigma\left\{X_{i}: i \in I\right\}$ (with $\mathscr{F}_{\varnothing}$ the trivial σ-algebra) and let W_{1} denote an \mathscr{F}_{1}-measurable random variable. (Throughout this paper the random variables W_{I} may depend on n, $W_{t}=W_{t n}$; the parameter n will be suppressed where possible.) We assume the random variables W_{I} to be centered, square integrable, and uncorrelated:

$$
E W_{I}=0, \quad E W_{I}^{2}=\sigma_{I}^{2}<\infty, \quad E W_{I} W_{J}=0 \quad \text { if } \quad I \neq J .
$$

In a beautiful 1990 paper, $\mathrm{Pe}-$ ter de Jong proved a surprising result for a sequence $\left\{W_{n}: n \geq 1\right\}$ of normalised degenerate U-statistics, that is:

If $\operatorname{Inf}\left(W_{n}\right) \rightarrow 0$, then W_{n} verifies a Central Limit Theorem provided

Main Theme: Peter de Jong, 1990

journal of multivariate analysis 34, 275-289 (1990)

A Central Limit Theorem for Generalized Multilinear Forms

Peter de Jong

Courseware Europe b.v., Ebbehout 1, 1507 EA Zaandam, The Netherlands

Communicated by the Editors

Let X_{1}, \ldots, X_{n} be independent random variables and define for each finite subset $I \subset\{1, \ldots, n\}$ the σ-algebra $\mathscr{F}_{\boldsymbol{I}}=\sigma\left\{X_{i}: i \in I\right\}$. In this paper $\bar{F}_{\boldsymbol{r}}$-measurable random variables W_{l} are considered, subject to the centering condition $E\left(W_{t} \mid F_{J}\right)=0$ a.s. unless $I \subset J$. A central limit theorem is proven for d-homogeneous sums $W(n)=\sum_{i n-d} W_{l}$, with var $W(n)=1$, where the summation extends over all $\binom{a}{d}$ subsets $I \subset\{1, \ldots, n\}$ of size $|I|=d$, under the condition that the normed fourth moment of $W(n)$ tends to 3 . Under some extra conditions the condition is also necessary. 1990 Academic Press. Inc.

\author{

1. Introduction and Summary
}

We start with a sketch of the general setting. Consider independent random variables X_{1}, \ldots, X_{n} on the probability space (Ω, \mathscr{F}, P). Define for each finite subset $I \subset\{1, \ldots, n\}$ the σ-algebra $\mathscr{F}_{I}=\sigma\left\{X_{i}: i \in I\right\}$ (with $\mathscr{F}_{\varnothing}$ the trivial σ-algebra) and let W_{1} denote an \mathscr{F}_{1}-measurable random variable. (Throughout this paper the random variables W_{I} may depend on n, $W_{t}=W_{t n}$; the parameter n will be suppressed where possible.) We assume the random variables W_{I} to be centered, square integrable, and uncorrelated:

$$
E W_{I}=0, \quad E W_{I}^{2}=\sigma_{I}^{2}<\infty, \quad E W_{I} W_{J}=0 \quad \text { if } \quad I \neq J .
$$

In a beautiful 1990 paper, $\mathrm{Pe}-$ ter de Jong proved a surprising result for a sequence $\left\{W_{n}: n \geq 1\right\}$ of normalised degenerate U-statistics, that is:

If $\operatorname{Inf}\left(W_{n}\right) \rightarrow 0$, then W_{n} verifies a Central Limit Theorem provided

$$
\mathbb{E} W_{n}^{4} \rightarrow 3\left(=\mathbb{E} N(0,1)^{4}\right) .
$$

REMARKS

* Original proof: martingale CLT + (heavy) combinatorial analysis.
* In Döbler \& Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_{n}=\left(W_{n}^{(1)}, \ldots, W_{n}^{(d)}\right), n \geq 1$, be vectors of degenerate $U-$ statistics such that Then, $\mathbf{W}_{n} \Rightarrow \mathbf{N}_{d}(0, \Sigma)+$ quantitative bounds.
* Combinatorial component of 2016 proofs: basically, unchanged since de Jong (1990).
* Careful bookkeeping of constants allows for $d=d_{n} \rightarrow \infty$ as soon as $d_{n}!\ll \max _{\ell} \operatorname{Inf}\left(W_{n}^{(\ell)}\right)^{\alpha}$ (some $\alpha>0 ;$ absolutely not sharp).

REMARKS

* Original proof: martingale CLT + (heavy) combinatorial analysis.
* In Döbler \& Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_{n}=\left(W_{n}^{(1)}, \ldots, W_{n}^{(d)}\right), n \geq 1$, be vectors of degenerate U statistics such that (i) $\operatorname{Cov}\left(\mathbf{W}_{n}\right) \rightarrow \Sigma$, (ii) $\max _{i} \operatorname{Inf}\left(W_{n}^{(i)}\right) \rightarrow 0$, (iii) $\mathbb{E}\left[\left(W_{n}^{(i)}\right)^{2}\left(W_{n}^{(j)}\right)^{2}\right] \rightarrow \Sigma(i, i) \Sigma(j, j)+2 \Sigma(i, j)^{2}$.

Then, $\mathbf{W}_{n} \Rightarrow \mathbf{N}_{d}(0, \Sigma)+$ quantitative bounds.

* Combinatorial component of 2016 proofs: basically, unchanged since de Jong (1990).
* Careful bookkecping of constants allows for $d=d_{n} \rightarrow \infty$ as soon as $d_{n}!\ll \max _{\ell} \operatorname{Inf}\left(W_{n}^{(\ell)}\right)^{\alpha}$ (some $\alpha>0$; absolutely not sharp).

REMARKS

* Original proof: martingale CLT + (heavy) combinatorial analysis.
* In Döbler \& Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_{n}=\left(W_{n}^{(1)}, \ldots, W_{n}^{(d)}\right), n \geq 1$, be vectors of degenerate U statistics such that (i) $\operatorname{Cov}\left(\mathbf{W}_{n}\right) \rightarrow \Sigma$, (ii) $\max _{i} \operatorname{Inf}\left(W_{n}^{(i)}\right) \rightarrow 0$, (iii) $\mathbb{E}\left[\left(W_{n}^{(i)}\right)^{2}\left(W_{n}^{(j)}\right)^{2}\right] \rightarrow \Sigma(i, i) \Sigma(j, j)+2 \Sigma(i, j)^{2}$.

Then, $\mathbf{W}_{n} \Rightarrow \mathbf{N}_{d}(0, \Sigma)+$ quantitative bounds.
^ Combinatorial component of 2016 proofs: basically, unchanged since de Jong (1990).
\star Careful bookkeeping of constants allows for $d=d_{n} \rightarrow \infty$ as soon as $d_{n}!\ll \max _{\ell} \operatorname{Inf}\left(W_{n}^{(\ell)}\right)^{\alpha}$ (some $\alpha>0$; absolutely not sharp).

REMARKS

* Original proof: martingale CLT + (heavy) combinatorial analysis.
* In Döbler \& Peccati (EJP, 2016) (using Stein's method): Let $\mathbf{W}_{n}=\left(W_{n}^{(1)}, \ldots, W_{n}^{(d)}\right), n \geq 1$, be vectors of degenerate U statistics such that (i) $\operatorname{Cov}\left(\mathbf{W}_{n}\right) \rightarrow \Sigma$, (ii) $\max _{i} \operatorname{Inf}\left(W_{n}^{(i)}\right) \rightarrow 0$, (iii) $\mathbb{E}\left[\left(W_{n}^{(i)}\right)^{2}\left(W_{n}^{(j)}\right)^{2}\right] \rightarrow \Sigma(i, i) \Sigma(j, j)+2 \Sigma(i, j)^{2}$. Then, $\mathbf{W}_{n} \Rightarrow \mathbf{N}_{d}(0, \Sigma)+$ quantitative bounds.
* Combinatorial component of 2016 proofs: basically, unchanged since de Jong (1990).
\star Careful bookkeeping of constants allows for $d=d_{n} \rightarrow \infty$ as soon as $d_{n}!\ll \max _{\ell} \operatorname{Inf}\left(W_{n}^{(\ell)}\right)^{\alpha}$ (some $\alpha>0$; absolutely not sharp).

Symmetric U-Processes

\star Let $\left\{X_{i}: i \geq 1\right\}$ be a sequence of i.i.d. random elements.
\star Fix $k \geq 2$, and let $g_{n}: E^{k} \rightarrow \mathbb{R}$ be a sequence of symmetric, square-integrable and degenerate kernels.

* The sequential U-process associated with g_{n} is the random function
* Problem: study the convergence of $U\left(g_{n} ; \cdot\right)$ in the Skorohod space $D[0,1]$. We write $U_{n}:=U\left(g_{n} ; 1\right)$, and $\sigma_{n}^{2}:=\operatorname{Var}\left(U_{n}\right)$.

Symmetric U-Processes

\star Let $\left\{X_{i}: i \geq 1\right\}$ be a sequence of i.i.d. random elements.
\star Fix $k \geq 2$, and let $g_{n}: E^{k} \rightarrow \mathbb{R}$ be a sequence of symmetric, square-integrable and degenerate kernels.

* The sequential U-process associated with g_{n} is the random function
* Problem: study the convergence of $U\left(g_{n} ; \cdot\right)$ in the Skorohod space $D[0,1]$. We write $U_{n}:=U\left(g_{n} ; 1\right)$, and $\sigma_{n}^{2}:=\operatorname{Var}\left(U_{n}\right)$.

Symmetric U-Processes

\star Let $\left\{X_{i}: i \geq 1\right\}$ be a sequence of i.i.d. random elements.
\star Fix $k \geq 2$, and let $g_{n}: E^{k} \rightarrow \mathbb{R}$ be a sequence of symmetric, square-integrable and degenerate kernels.

* The sequential U-process associated with g_{n} is the random function

$$
t \mapsto U\left(g_{n} ; t\right):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq\lfloor n t\rfloor} g_{n}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right), t \in[0,1] .
$$

* Problem: study the convergence of $U\left(g_{n} ; \cdot\right)$ in the Skorohod space $D[0,1]$. We write $U_{n}:=U\left(g_{n} ; 1\right)$, and $\sigma_{n}^{2}:=\operatorname{Var}\left(U_{n}\right)$.

Symmetric U-Processes

\star Let $\left\{X_{i}: i \geq 1\right\}$ be a sequence of i.i.d. random elements.
\star Fix $k \geq 2$, and let $g_{n}: E^{k} \rightarrow \mathbb{R}$ be a sequence of symmetric, square-integrable and degenerate kernels.

* The sequential U-process associated with g_{n} is the random function

$$
t \mapsto U\left(g_{n} ; t\right):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq\lfloor n t\rfloor} g_{n}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right), t \in[0,1] .
$$

* Problem: study the convergence of $U\left(g_{n} ; \cdot\right)$ in the Skorohod space $D[0,1]$. We write $U_{n}:=U\left(g_{n} ; 1\right)$, and $\sigma_{n}^{2}:=\operatorname{Var}\left(U_{n}\right)$.

Statement (Executive Summary)

Döbler, Kasprzak \& Peccati (AAP, 2022)

Let $\widetilde{U}\left(g_{n} ; \cdot\right):=U_{n}\left(g_{n} ; \cdot\right) / \sigma_{n}$ and $\widetilde{U}_{n}:=U_{n} / \sigma_{n}$. Assume that
(a) $\operatorname{Inf}\left(\widetilde{U}_{n}\right) \rightarrow 0$;
(b) $\left|\mathbb{E}\left[\widetilde{U}_{n}^{4}\right]-3\right| \ll n^{-\eta}$ for some $\eta>0+$ "technicalities".

Then,

$$
\left\{U\left(g_{n} ; t\right): t \in[0,1]\right\} \Longrightarrow\left\{B\left(t^{k}\right): t \in[0,1]\right\},
$$

in $D[0,1]$, where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators'
(ii) A perfectly working multivariate version is also available.

Statement (Executive Summary)

Döbler, Kasprzak \& Peccati (AAP, 2022)

Let $\widetilde{U}\left(g_{n} ; \cdot\right):=U_{n}\left(g_{n} ; \cdot\right) / \sigma_{n}$ and $\widetilde{U}_{n}:=U_{n} / \sigma_{n}$. Assume that
(a) $\operatorname{Inf}\left(\widetilde{U}_{n}\right) \rightarrow 0$;
(b) $\left|\mathbb{E}\left[\widetilde{U}_{n}^{4}\right]-3\right| \ll n^{-\eta}$ for some $\eta>0+$ "technicalities".

Then,

$$
\left\{U\left(g_{n} ; t\right): t \in[0,1]\right\} \Longrightarrow\left\{B\left(t^{k}\right): t \in[0,1]\right\},
$$

in $D[0,1]$, where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators"

Statement (Executive Summary)

Döbler, Kasprzak \& Peccati (AAP, 2022)

Let $\widetilde{U}\left(g_{n} ; \cdot\right):=U_{n}\left(g_{n} ; \cdot\right) / \sigma_{n}$ and $\widetilde{U}_{n}:=U_{n} / \sigma_{n}$. Assume that
(a) $\operatorname{Inf}\left(\widetilde{U}_{n}\right) \rightarrow 0$;
(b) $\left|\mathbb{E}\left[\widetilde{U}_{n}^{4}\right]-3\right| \ll n^{-\eta}$ for some $\eta>0+$ "technicalities".

Then,

$$
\left\{U\left(g_{n} ; t\right): t \in[0,1]\right\} \Longrightarrow\left\{B\left(t^{k}\right): t \in[0,1]\right\}
$$

in $D[0,1]$, where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using "contraction operators"
(ii) A perfectly working multivariate version is also available.

Generalizing Miller and Sen (1972)

\star Consider a normalized, non-degenerate (centered and symmetric) U-process U_{n} on $[0,1]$, along with its Hoeffding decomposition:

$$
U_{n}(t)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq\lfloor n t\rfloor} G_{n}\left(X_{i_{1}}, \ldots, X_{i_{p}}\right)=\sum_{k=1}^{p} U_{n}^{(k)}(t)
$$

Döbler, Kasprzak \& Peccati (AAP, 2022) Assume that $\operatorname{Var}\left(U_{n}^{(k)}(1)\right) \rightarrow b_{k}^{2}$, and that each $U_{n}^{(k)}$ verifies (an adequate version of) the assumptions of the previous theorem. Then,

Generalizing Miller and Sen (1972)

* Consider a normalized, non-degenerate (centered and symmetric) U-process U_{n} on $[0,1]$, along with its Hoeffding decomposition:

$$
U_{n}(t)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq\lfloor n t\rfloor} G_{n}\left(X_{i_{1}}, \ldots, X_{i_{p}}\right)=\sum_{k=1}^{p} U_{n}^{(k)}(t) .
$$

Döbler, Kasprzak \& Peccati (AAP, 2022)

Assume that $\operatorname{Var}\left(U_{n}^{(k)}(1)\right) \rightarrow b_{k}^{2}$, and that each $U_{n}^{(k)}$ verifies (an adequate version of) the assumptions of the previous theorem. Then,

$$
U_{n} \Longrightarrow\left\{\sum_{k=1}^{p} b_{k}^{2} \times t^{p-k} B_{k}\left(t^{k}\right), \quad t \in[0,1]\right\},
$$

with B_{k} independent Brownian motions.

Example (Changepoint Analysis)

\star Let $r_{n} \downarrow 0$ Consider X_{1}, \ldots, X_{n} i.i.d. uniform points on the unit cube $\subset \mathbb{R}^{d}$, and connect X_{ℓ} and X_{j} if $0<\left\|X_{\ell}-X_{j}\right\|<r_{n}$:

* We are interested in the changepoint empirical process

* Instance of graph-based changepoint detection: see Chen \& Zhang (2015)

Example (Changepoint Analysis)

\star Let $r_{n} \downarrow 0$ Consider X_{1}, \ldots, X_{n} i.i.d. uniform points on the unit cube $\subset \mathbb{R}^{d}$, and connect X_{ℓ} and X_{j} if $0<\left\|X_{\ell}-X_{j}\right\|<r_{n}$:

* We are interested in the changepoint empirical process

* Instance of graph-based changepoint detection: see Chen \& Zhang (2015)

Example (Changepoint Analysis)

\star Let $r_{n} \downarrow 0$ Consider X_{1}, \ldots, X_{n} i.i.d. uniform points on the unit cube $\subset \mathbb{R}^{d}$, and connect X_{ℓ} and X_{j} if $0<\left\|X_{\ell}-X_{j}\right\|<r_{n}$:

* We are interested in the changepoint empirical process

$$
S_{n}(t):=\sum_{1 \leq i \leq\lfloor n t\rfloor<j \leq n} \mathbf{1}_{\left\{X_{i} \sim X_{j}\right\}}, \quad t \in[0,1] .
$$

* Instance of graph-based changepoint detection: see Chen \& Zhang (2015)

Example (Changepoint Analysis)

\star Let $r_{n} \downarrow 0$ Consider X_{1}, \ldots, X_{n} i.i.d. uniform points on the unit cube $\subset \mathbb{R}^{d}$, and connect X_{ℓ} and X_{j} if $0<\left\|X_{\ell}-X_{j}\right\|<r_{n}$:

* We are interested in the changepoint empirical process

$$
S_{n}(t):=\sum_{1 \leq i \leq\lfloor n t\rfloor<j \leq n} \mathbf{1}_{\left\{X_{i} \sim X_{j}\right\}}, \quad t \in[0,1] .
$$

* Instance of graph-based changepoint detection: see Chen \& Zhang (2015)

Example (Changepoint Analysis)

Döbler, Kasprzak \& Peccati (AAP, 2022)

Consider the sparse regime: $n r_{n}^{d} \rightarrow 0$ and $n^{2} r_{n}^{d} \rightarrow \infty$. Then, there exists a constant $c>0$ (depending on d) such that, setting $\sigma_{n}^{2}:=c n^{2} r_{n}^{d}$, and

$$
T_{n}(t):=\frac{S(n, t)-\mathbb{E}[S(n, t)]}{\sigma_{n}}, \quad t \in[0,1],
$$

one has that, if $n^{2-\delta} \ll r_{n}^{d} \ll n^{-1}$ for some $\delta>0$, then

$$
T_{n} \Longrightarrow\{\sqrt{2} b(t): t \in[0,1]\}
$$

where b is a standard Brownian bridge. In particular:

$$
\arg \max _{t \in[0,1]}\left(-T_{n}(t)\right) \Longrightarrow \mathbf{U}_{[0,1]}
$$

Homogenoeus Sums: de Jong \& Universality

Nourdin, Peccati \& Reinert (AoP, 2010)
Let $\mathbf{G}=\left\{G_{i}: i \geq 1\right\}$ be i.i.d. $N(0,1)$. Consider a sequence of normalized homogeneous sums or order $k \geq 2$:

$$
Q_{n}(\mathbf{G}):=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} G_{i_{1}} \cdots G_{i_{k^{\prime}}} \quad n \geq 1 .
$$

If $\mathbb{E} Q_{n}(G)^{4} \rightarrow 3$, then

$$
Q_{n}(\mathbf{X})=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} X_{i_{1}} \cdots X_{i_{k}} \Rightarrow N(0,1),
$$

for every sequence $\mathbf{X}:=\left\{X_{i}: i \geq 1\right\}$ of independent centered r.v.'s such that $\sup _{i} \mathbb{E}\left|X_{i}\right|^{2+\epsilon}<\infty$.

Homogenoeus Sums: de Jong \& Universality

Nourdin, Peccati \& Reinert (AoP, 2010)
Let $\mathbf{G}=\left\{G_{i}: i \geq 1\right\}$ be i.i.d. $N(0,1)$. Consider a sequence of normalized homogeneous sums or order $k \geq 2$:

$$
Q_{n}(\mathbf{G}):=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} G_{i_{1}} \cdots G_{i_{k^{\prime}}} \quad n \geq 1 .
$$

If $\mathbb{E} Q_{n}(G)^{4} \rightarrow 3$, then

$$
Q_{n}(\mathbf{X})=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} X_{i_{1}} \cdots X_{i_{k}} \Rightarrow N(0,1),
$$

for every sequence $\mathbf{X}:=\left\{X_{i}: i \geq 1\right\}$ of independent centered r.v.'s such that $\sup _{i} \mathbb{E}\left|X_{i}\right|^{2+\epsilon}<\infty$.

Recent applications: Caravenna, Sun \& Zygouras (2016++, polymers); Angst \& Poly (2021, zeros of random polynomials).

Non-SYMmetric Statistics

Döbler, Kasprzak \& Peccati (PTRF, 2022+)

Consider sequential U-processes associated with normalized non-symmetric U-statistics:

$$
t \mapsto U_{n}(t):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq\lfloor n t\rfloor} g_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right), t \in[0,1] .
$$

Assume that
(a) $\operatorname{Inf}\left(U_{n}(1)\right) \rightarrow 0$;
(b) $\mathbb{E}\left[U_{n}(1)^{4}\right] \rightarrow 3$;
(c) $\mathbb{E}\left[g_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)^{4}\right] \leq C \mathbb{E}\left[g_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)^{2}\right]^{2}$

Then, $\left\{U_{n}\right\}$ is relatively compact in $D[0,1]$ and every adherent point corresponds to the law of a continuous Gaussian process.

Functional Universality

Döbler, Kasprzak \& Peccati (PTRF, 2022+)

Let $\mathbf{G}=\left\{G_{i}: i \geq 1\right\}$ be i.i.d. $N(0,1)$. Consider a sequence of normalized homogeneous U-processes:

$$
Q_{\lfloor n t\rfloor}(\mathbf{G}):=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq\lfloor n t\rfloor} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} G_{i_{1}} \cdots G_{i_{k},} \quad t \in[0,1] .
$$

If $Q_{\lfloor n t\rfloor}(\mathbf{G})$ converges in $D[0,1]$ to a continuous Gaussian process, then the same holds for

$$
Q_{\lfloor n t\rfloor}(\mathbf{X})=\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq\lfloor n t\rfloor} a_{\left(i_{1}, \ldots, i_{k}\right)}^{(n)} X_{i_{1}} \cdots X_{i_{k}}
$$

for every sequence $\mathbf{X}:=\left\{X_{i}: i \geq 1\right\}$ of independent centered r.v.'s such that $\sup _{i} \mathbb{E}\left|X_{i}\right|^{4}<\infty$.

Fractional Products

$\star \operatorname{Fix} k \geq 3$, as well as $m=2, \ldots, k-1$.
\star Write $N=n^{m}$, and let $\varphi:[n]^{m} \rightarrow[N]$ be one-to-one.
\star Consider a connected m-cover S_{1}, \ldots, S_{k} of $[k]$, that is: (i) $\cup_{i} S_{i}=[k]$, (ii) $\left|S_{i}\right|=m$ and (iii) each index $i \in[k]$ appears in exactly m subsets S_{i}.
\star We define

$$
F_{N}:=\left\{\left(\varphi\left(\pi_{S_{1}} \mathbf{a}\right), \ldots, \varphi\left(\pi_{S_{k}} \mathbf{a}\right)\right): \mathbf{a} \in[n]^{k}\right\}
$$

and denote by \tilde{F}_{N} its symmetrization.
\star Then \tilde{F}_{N} is a symmetric subset of $[N]^{k}$ s.t. $\left|\tilde{F}_{N}\right| \asymp N^{k / m}$ (Fractional Cartesian Product)

Fractional Products

Döbler, Kasprzak \& Peccati (PTRF, 2022+)

For every sequence $\mathbf{X}:=\left\{X_{i}: i \geq 1\right\}$ of independent centered r.v.'s such that $\sup _{i} \mathbb{E}\left|X_{i}\right|^{4}<\infty$, the empirical process

$$
Q_{\lfloor N t\rfloor}(\mathbf{X})=\frac{1}{\left|\tilde{F}_{N}\right|^{1 / 2}} \sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq\lfloor N t\rfloor} \mathbf{1}_{\left\{i_{1}, \ldots, i_{k}\right\} \in \tilde{F}_{N}} X_{i_{1}} \cdots X_{i_{k}}
$$

weakly converges to a multiple of $\left\{B\left(t^{k / m}\right): t \in[0,1]\right\}$, where B is a standard Brownian motion (${ }^{*}$).
(*) Not achievable by symmetric statistics.

Final Words

THANK YOU FOR YOUR ATTENTION!

