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* Topic: multivariate and functional fluctuations of U-statistics.

* In the last 15 years: proof of several fourth moment theorems
for sequences of random variables living in eigenspaces of
Markov operators, e.g.: Gaussian Wiener chaos (Nualart &
Peccati, 2005; Nourdin & Peccati, 2007-10); Poisson Wiener chaos
(Peccati, Solé, Tagqu & Utzet, 2010; Dobler & Peccati, 2018); diffusive
Markov operators (Ledoux, 2010; Azmoodeh, Campese & Poly, 2013).

* Applications: mathematical statistics, mathematical physics,
stochastic geometry (random geometric graphs & geometry
of random fields), ...

* This line of research was anticipated (in 1990!) by P. de Jong.
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* Let (X3, ..., X,) be independent random elements with val-
uesin (E, E).

x For k =1,...,n, a (square-integrable) U-statistic of order k is

a random variable with the form

W= Z qu‘M._.,z\;‘(Xi]/~-~/X/,)/

1<ip<---<ip<n
with g, : E¥ — R square-integrable.

* W is symmetric if the X;’s are i.i.d. and ¢
symmetric.

<\ll| ,,,,, I )

x W is degenerate if

Elg

& (11,001

(X, 0 Xi) | X :a € A] =0,

forall A € 111,..., i }

K

3/17



FRAMEWORK, I

* Let (X, ..., X,;) be independent random elements with val-
uesin (E, &).

* Fork =1, ...,n, a (square-integrable) U-statistic of order k is
a random variable with the form

W = E g(i],...,ik) (Xi]/"‘l Xik)/

1§i1<~-<ik§n

with g : EF — R square-integrable.

i],...,i]<)

3/17



FRAMEWORK, I

* Let (X, ..., X,;) be independent random elements with val-
uesin (E, &).

* Fork =1, ...,n, a (square-integrable) U-statistic of order k is
a random variable with the form

W = E g(i],...,ik) (Xi]/"‘l Xik)/

1§i1<~-<ik§n

with ¢ : EF — R square-integrable.

(i1,--ik)
* W is symmetric if the X;’s are i.i.d. and g; ;) = g is
symmetric.

3/17



FRAMEWORK, I
* Let (X, ..., X,;) be independent random elements with val-
uesin (E, &).

* Fork =1, ...,n, a (square-integrable) U-statistic of order k is
a random variable with the form

W = E g(il,...,ik) (Xi]/"‘l Xik)/

1f§i]<<"'<iikfgﬂ
with g, iy EF — R square-integrable.

* W is symmetric if the X;’s are i.i.d. and g; ;) = g is
symmetric.

* W is degenerate if

Elga,,..i) (X, - X)) | Xa 1a € A] =0,

-----

forall A G {iy, ..., i }.

3/17



* Fact: every square-integrable F = F(Xj, ..., X;;) can be uniquely
decomposed into a sum of degenerate U-statistics of order
k=0,1,..,n (Hoeffding decomposition).
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W= Z a(ih---rik)xil o Xy Aiy,..ix) € RR.

1f§i1<i"'<:ikf;7

For Rademacher variables: “degenerate U-statistics of order
k” < “homogeneous sums of order k” < “kth Walsh chaos”.

The maximal influence associated with a degenerate W is

Inf(W) = max ) Elg, ik)(Xz-],...,Xik)Z]

i=1,..n. ! Ly T
’ nze{z],...,zk}
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MAIN THEME: PETER DE JONG, 1990

JOURNAL OF MULTIVARIATE ANALYSIS 34, 275-289 (1990) In a beautiful 1990 paper’ Pe-
ter de Jong proved a sur-
A Central Limit Theorem P
for Generalized Multilinear Forms prlSll’lg I‘esult fOI‘ a Sequence
e b dove {W,, : n > 1} of normalised

Courseware Europe b.v., Ebbehout 1,
1507 EA Zaandam, The Netherlands

S degenerate U-statistics, that

Let X,. ... X, be independent random variables and define for each finite subset 1S:

1< {1,...n} the c-algebra %= {X,:ic]}. In this paper F-measurable random
variables W, are considered, subject to the centering condition E(W, | #,)=0 as.
unless /cJ. A central limit theorem is proven for d-homogeneous sums
W(n) =X .. W, with var W(n) =1, where the summation extends over all (3)
subsets /< {1,..,n} of size |I|=d, under the condition that the normed fourth
moment of W(n) tends to 3. Under some extra conditions the condition is also
necessary. O 199 Academic Pres.Inc.

1. INTRODUCTION AND SUMMARY

We start with a sketch of the general setting. Consider independent
random variables X, .., X, on the probability space (2, #, P). Define for
cach finite subset 7 {1, .., n} the o-algebra %= {X, : ie/} (with % the
trivial o-algebra) and let W, denote an %-measurable random variable.
(Throughout this paper the random variables W, may depend on n,
W,= W,,; the parameter n will be suppressed where possible.) We assume
the random variables W, to be centered, squarc integrable, and
uncorrelated:

EW,=0, EWj=oi<c, EW,W,= if 1#J
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1. INTRODUCTION AND SUMMARY

We start with a sketch of the general setting. Consider independent
random variables X, .., X, on the probability space (2, #, P). Define for
cach finite subset 7 {1, .., n} the o-algebra %= {X, : ie/} (with % the
trivial o-algebra) and let W, denote an %-measurable random variable.
(Throughout this paper the random variables W, may depend on n,
W,= W,,; the parameter n will be suppressed where possible.) We assume
the random variables W, to be centered, squarc integrable, and
uncorrelated:

EW,=0, EWi=ci<c, EW,W,=0 if I#J.

MAIN THEME: PETER DE JONG, 1990

In a beautiful 1990 paper, Pe-
ter de Jong proved a sur-
prising result for a sequence
{Wy : n > 1} of normalised
degenerate U-statistics, that
is:

If Inf(W,,) — 0, then W, veri-
fies a Central Limit Theorem
provided

EW; — 3 (=EN(0,1)%).
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* Original proof: martingale CLT + (heavy) combinatorial anal-
ysis.

In Débler & Peccati (EJP, 2016) (using Stein’s method): Let
W, = (W,S]'),..., W,gd)), n > 1, be vectors of degenerate U-

statistics such that . .

Then, W, = N;(0,%) + quantitative bounds.

Combinatorial component of 2016 proofs: basically, unchanged
since de Jong (1990).

Careful bookkeeping of constants allows for d = d,, — oo as

soon as d,! < max; Inf(W,(/ \)“ (some a > 0; absolutely not
sharp).
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* Let {X;:i > 1} be a sequence of i.i.d. random elements.

* Fix k > 2, and let be a sequence of
* The associated with g, is the random
function
* : study the convergence of U (gy; -) in the
J C
. We write , and
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SYMMETRIC U-PROCESSES

* Let {X;:i > 1} be a sequence of i.i.d. random elements.

* Fixk >2,and let g, : EF - Rbea sequence of symmetric,
square-integrable and degenerate kernels.

* The sequential U-process associated with g, is the random
function

t U(gnt) i= Y. gn(Xi,, . Xi,), t €0,1].

1<y <ip<---<ix <[ nt]
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* Let {X;:i > 1} be a sequence of i.i.d. random elements.

* Fixk >2,and let g, : EF - Rbea sequence of symmetric,
square-integrable and degenerate kernels.

* The sequential U-process associated with g, is the random
function

t U(gnt) i= Y. gn(Xi,, . Xi,), t €0,1].

1<y <ip<---<ix <[ nt]

* Problem: study the convergence of U(gy; -) in the Skorohod
space D|0,1]. We write U,, := U(gx; 1), and 02 := Var(U,).
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STATEMENT (EXECUTIVE SUMMARY)

Dobler, Kasprzak & Peccati (AAP, 2022)
Let fl(gn; )= Uy (gu;-) /0y and U, := U,/0,. Assume that
(@) Inf(U,) — 0;

(b) for some 1 > 0 + “technicalities”.

Then,
{U(gn;t) -t €[0,1]} = {B(t") : t € [0,1]},

in D[0, 1], where B is a standard Brownian motion.
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(a) Inf(U,) — 0;
(b) for some 1 > 0 + “technicalities”.
Then,
{U(gn;t) : t €[0,1]} = {B(t") : t € [0,1]},

in D[0, 1], where B is a standard Brownian motion.

Remarks: (i) Condition (b) is checked by using “contraction
operators”
(ii) A perfectly working multivariate version is also available.
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GENERALIZING MILLER AND SEN (1972)

* Consider a normalized, non-degenerate (centered and sym-
metric) U-process U, on [0, 1], along with its Hoeffding de-
composition:

p
Up(t) = Y GalXy e X)) = Y uPe).
k=1

1<iy <ip<---<ip<|nt]
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metric) U-process U, on [0, 1], along with its Hoeffding de-
composition:

p
k
U (t) = Y GalXy e X)) = Y uPe).
k=1

1<iy <ip<---<ip<|nt]

Dobler, Kasprzak & Peccati (AAP, 2022)

Assume that Var(ll,(lk) (1)) — b2, and that each ud verifies (an
adequate version of) the assumptions of the previous theorem. Then,

p
u, — {Z b2 x tP KB (), te [O,l]},
=1

with By independent Brownian motions.
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* Letr, | 0Consider Xj, ..., X, i.i.d. uniform points on the unit
cube C IR?, and connect X, and X; if 0 < || X, — Xj|| < ry:
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EXAMPLE (CHANGEPOINT ANALYSIS)

* Letr, | 0Consider Xj, ..., X, i.i.d. uniform points on the unit
cube C R?, and connect X, and X; if 0 < [|X; — Xj|| < ry:

* We are interested in the changepoint empirical process

Sn(t) = Z 1{Xi"’Xj}’ t e [O, 1]

1<i<|nt|<j<n
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* Letr, | 0Consider Xj, ..., X, i.i.d. uniform points on the unit
cube C R?, and connect X, and X; if 0 < [|X; — Xj|| < ry:

* We are interested in the changepoint empirical process

Sn(t) = Z 1{Xi"’Xj}’ t e [O, 1]

1<i<|nt|<j<n

* Instance of graph-based changepoint detection: see Chen &
Zhang (2015)
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EXAMPLE (CHANGEPOINT ANALYSIS)

Dobler, Kasprzak & Peccati (AAP, 2022)

Consider the sparse regime: nré — 0 and n?r? — co. Then, there

exists a constant ¢ > 0 (depending on d) such that, setting

02 :=cn*rf, and

Ty (t) i= S(n,t) _Ulf[s(”’t)], te[0,1],

one has that, ifnz"s < rﬂ < nflfor some 6 > 0, then
T, = {V2b(t) : t € [0,1]},

where b is a standard Brownian bridge. In particular:
arg max (—T;(t)) = U1y

te[0,1]
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HOMOGENOEUS SUMS: DE JONG & UNIVERSALITY

Nourdin, Peccati & Reinert (AoP, 2010)
Let G = {G; : i > 1} bei.i.d. N(0,1). Consider a sequence of
normalized homogeneous sums or order k > 2:

Qn(G) = Z aEZ),m,ik)Gil T Gik/ n=>1
1<ii<ip<--ix<n
If , then
Qn(X) = Y “EZ),...,ik>Xil . X;, = N(0,1),

1<ii<ip<--ix<n

for every sequence X := {X; : i > 1} of independent centered r.v.’s
such that sup; E|X;|>*€ < oo.

12/17



HOMOGENOEUS SUMS: DE JONG & UNIVERSALITY

Nourdin, Peccati & Reinert (AoP, 2010)

Let G = {G; : i > 1} bei.i.d. N(0,1). Consider a sequence of
normalized homogeneous sums or order k > 2:

Q(G)= Y ey GGy n=1
1<ii<ip<--ix<n
If , then
Qn(X) Y el X Xy = N(O,1),

1<ii<ip<--ix<n

for every sequence X := {X; : i > 1} of independent centered r.v.’s
such that sup; E|X;|>*€ < oo.

Recent applications: Caravenna, Sun & Zygouras (2016++,
polymers); Angst & Poly (2021, zeros of random polynomials).
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NON-SYMMETRIC STATISTICS

Dobler, Kasprzak & Peccati (PTRE, 2022+)

Consider sequential U-processes associated with normalized
non-symmetric U-statistics:

tis Up(t) = Y gEZ{.__’ik)(Xil,...,Xik), t e [0,1].
1<ip<ip<---<i < LVltJ

Assume that

(@) Inf(U, (1)) — 0;

(b) ;

(© B3 (Xip XY < CE[g[Y (X, X322
Then, {U,} is relatively compact in D|0, 1] and every adherent point
corresponds to the law of a continuous Gaussian process.
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FUNCTIONAL UNIVERSALITY

Dobler, Kasprzak & Peccati (PTRE, 2022+)
Let G = {G; :i > 1} bei.id. N(0,1). Consider a sequence of
normalized homogeneous U-processes:

Q| (G) := y aE;” G- Gy, tE[0,1],

------
1<ip<ip<--i; < LVltJ

If Qut) (G) converges in D[0,1] to a continuous Gaussian process,
then the same holds for

Q) (X) = X ﬂﬁm i) X Kigs

1<ii<ip<-i < Li’ltJ

for every sequence X := {X; : i > 1} of independent centered r.v.’s
such that sup; E|X;|* < oo.
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FRACTIONAL PRODUCTS

*x Fixk>3,aswellasm =2,...,k — 1.

* Write N = n™, and let ¢ : [n]"™ — [N] be one-to-one.

* Consider a connected m-cover S, ..., S; of [k], that is: (i)
U;S; = [k], (ii) |S;| = m and (iii) each index i € [k] appears
in exactly m subsets S;.

* We define

En := {(¢(ms,a), ..., p(ms,a)) 1a € [n}k},

and denote by Fy its symmetrization.

x Then Fy is a symmetric subset of [N]¥ s.t. |Fy| < NF/™
(Fractional Cartesian Product)
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FRACTIONAL PRODUCTS

Dobler, Kasprzak & Peccati (PTRE, 2022+)

For every sequence X := {X; : i > 1} of independent centered r.v.’s
such that sup, E|X;|* < oo, the empirical process

1
Qnt(X) = MR ). 1 iery X Xy

1<ip<ip<---i( < LNfJ

weakly converges to a multiple of {B(t*/™) : t € [0,1]}, where Bisa
standard Brownian motion (*).

(*) Not achievable by symmetric statistics.
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THANK YOU FOR YOUR ATTENTION!
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