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Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.

- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.

- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space.

Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),

Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.2

What do we call entropic curvature?
- M`pYq : the set of positive σ-finite measures on a measurable space Y
- PpYq : the set of all probability measures on Y.
- Given q, r P PpYq, the relative entropy

Hpq|rq :“

ż

Y
logpdq{drq dq P r0,8s.

This definition extends to r PM`pYq.
- pX , dq a metric space. Given ν0, ν1 P PppX q,

Wppν0, ν1q :“

ˆ

inf
πPΠpν0,ν1q

ĳ

dpx , yqpdπpx , yq,
˙1{p

, p “ 1, 2

- pνt qtPr0,1s Ă PppX q is a constant speed Wp-geodesic from ν0 to ν1 if

Wppνs, νt q “ pt ´ sqWppν0, ν1q, @ 0 ď s ď t ď 1.

Lott-Sturm-Villani definition of entropic curvature of a geodesic space pX , dq

equipped with a reference measure m P M`pX q :

The entropic curvature of pX , d ,mq is lower bounded by K P R if for any
ν0, ν1 P P2pX q, there exists a constant speed W2-geodesic pνt qtPr0,1s from ν0
to ν1 such that for all t P r0, 1s,

Hpνt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
K
2

tp1´ tqW 2
2 pν0, ν1q. (1)

Results : McCann (97’) : K “ 0 on the Euclidean space. Otto-Villani (00),
Cordero-McCann-Schmuckenschläger (01’), von Renesse-Sturm (05’),
Lott-Villani (09’)-Sturm (06’) : If pX , dq is a Riemaniann manifold, m “ e´V Vol

(1) ô Bakry-Emery curvature condition CDpK ,8q : Ricc` HesspVq ě K.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.3

A guideline to define curvature on discrete spaces

- Bonciocat-Sturm (09’) : rough curvature for discrete spaces

- Ollivier-Villani (12’) Brunn-Minkowski on the discrete hypercube cube

- Erbar-Maas (11’,12’,14’) , Mielke (13’) : a first global entropic approach as m
is a unique invariant probability measure of a Markov kernel on X

A new distance WEM is defined using a discrete analogue of the Benamou
Brenier formula for W2, in order to provide a Riemannian structure for the
probability space PpX q. One has WEM ě

?
2 W1.

W2-geodesics are replaced by WEM -geodesics in the convexity property of
entropy.

- We propose in this talk a second global entropic approach following the works
by Léonard (13’,16’,17’), Hillion (14’,17’) and Gozlan-Roberto-S-Tetali (14’).

W2-geodesics are replaced by W1-geodesics called Schrödinger briges at zero
temperature and denoted by ppQt qtPr0,1s throughout this presentation.

- many other papers dealing with Erbar-Maas entropic approach,
and also many recent papers dealing with Bakry-Emery conditions on graphs.
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Discrete entropic curvature.4

What do we call “Schrödinger briges at zero temperature”?
Ω : set of paths drawn on X between time 0 and 1 : Ω “ tω |ω : r0, 1s Ñ X u.

Xt : ω P Ω ÞÑ ωt P X : the projection map.
Given a probability Q on the path space Ω, let us choose at random a path ω
with respect to Q, then Qt :“ Xt #Q is the law of ωt , and Q0,1 :“ pX0,X1q#Q
is the coupling law of pω0, ω1q with marginals Q0 and Q1.

Based on works by C. Léonard (13’,16’,17’) : the slowing down procedure.
‚ Continuous case : pX , dq “ pRd , | ¨ |q. Fixe γ ą 0 temperature parameter.

Rγ PM`pΩq : reference path measure, the Markov measure with
semigroup generator Lγ “ γ∆ and initial reversible measure dm “ dx ,
the Lebesgue measure on Rd .
Result : (Mikami 04’, Léonard 12’)

W 2
2 pν0, ν1q “ lim

γÑ0

„

γ min
QPPpΩq

!

HpQ|Rγq
ˇ

ˇ

ˇ
Q0 “ ν0,Q1 “ ν1

)



“ lim
γÑ0

γHppQγ |Rγq,

ppQγt qtPr0,1s : a Schrödinger bridge from ν0 to ν1, an entropic interpolation.
Setting pQ :“ limγÑ0

pQγ ,ppQt qtPr0,1s is a W2-geodesic from ν0 to ν1

‚ The discrete case : X the set of vertices of a connected graph, d the
graph distance,
Lγ “ γL, m PM`pX q reversible with respect to L.
W 2

2 Ø W1, γHppQγ |Rγq Ø 1{ logp1{γqHppQγ |Rγq
Setting pQ :“ limγÑ0

pQγ ,ppQt qtPr0,1s is a W1-geodesic from ν0 to ν1.
pπ :“ pQ0,1 is a W1-optimal coupling of ν0 and ν1.

Wp-geodesics are obtained as limits of sequences of entropic interpolations.
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2 Ø W1, γHppQγ |Rγq Ø 1{ logp1{γqHppQγ |Rγq
Setting pQ :“ limγÑ0

pQγ ,ppQt qtPr0,1s is a W1-geodesic from ν0 to ν1.
pπ :“ pQ0,1 is a W1-optimal coupling of ν0 and ν1.

Wp-geodesics are obtained as limits of sequences of entropic interpolations.
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W 2
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ˇ
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Discrete entropic curvature.5

X : set of vertices of a connected graph with bounded degree,
d : graph distance,
L : generator of a Markov process on X
Lγ “ γL, γ ą 0, m : invariante reversible measure.

Pt , t ě 0 : the Markov semi-group associated to L :

Pt f pxq :“
ÿ

yPX
f pyqPt px , yq, Lpx , yq :“ lim

tÑ0

Pt px , yq ´ P0px , yq
t

.

Additionnal assumption : Lpx , yq ą 0 iff dpx , yq “ 1 px „ yq
Result : From the Markov property, and since pQγ is the optimizer of the
Schrödinger problem, the Schrödinger bridge ppQγt qtPr0,1s can be expressed as
follows : for z P X

pQγt pzq “ Pγt fγpzqPγp1´tqg
γpzqmpzq “

ÿ

x,yPX

Pγt px , zqPγp1´tqpz, yq

Pγpx , zq
pQγ0,1px , yq,

where fγ and gγ are non-negative functions satisfying the Schrödinger system
#

fγpxqPγgγpxq “ h0pxq, ν0pxq “ h0pxqmpxq
gγpyqPγ fγpyq “ h1pyq, ν1pyq “ h1pyqmpyq

@x , y P X .

If L is uniformly bounded,

Pγt px , yq :“ eγtLpx , yq “
ÿ

kPN

ptγqk

k!
Lk px , yq “ γdpx,yq tdpx,yqLdpx,yqpx , yq

dpx , yq!
`opγdpx,yqq.

It implies as γ Ñ 0,

pQt pzq “
ÿ

x,yPX
Qt

x,y pzq pπpx , yq, with
ĳ

dpx , yq dpπpx , yq “ W1pν0, ν1q.
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Discrete entropic curvature.6

Structure of the “Schrödinger briges at zero temperature”

pQt pzq “
ÿ

x,yPX
Qt

x,y pzq pπpx , yq,

where pQt
x,y qtPr0,1s is the binomial path from δx to δy defined by

Qt
x,y pzq :“ 1rx,yspzq rpx , z, yq ρdpx,yq

t pdpx , zqq, z P X ,

with for any x , z, y P X ,

- rx , ys is the set of all points that belongs to a discrete geodesic from x to y ,

- rpx , z, yq :“
Ldpx,zqpx , zqLdpz,yqpz, yq

Ldpx,yqpx , yq
,

- ρd
t denotes the binomial law with parameters t P r0, 1s and d P N :

ρd
t pkq :“

´d
k

¯

tk p1´ tqd´k , k P t0, . . . , du.

Interpretation : Let d “ dpx , yq and Nt be a binomial random variable with law
ρd

t . Let Γ “ pΓ0, . . . , Γd q be a random discrete geodesic from x to y ,
independent of Nt with law

PpΓ “ αq “
Lpα0, α1q ¨ ¨ ¨ Lpαd´1, αd q

Ldpx,yqpx , yq
, if α “ pα0, α1, . . . , αd q.

Then pQt is the law of ΓNt .
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Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists. K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.
‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq

as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.
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Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists. K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.
‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq

as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists.

K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.
‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq

as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists. K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.

‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq
as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists. K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.
‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq

as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.7

Definition : C-displacement convexity property of entropy

On the discrete space pX , d ,m, Lq, one says that the relative entropy is
C-displacement convex where C “ pCt qtPr0,1s, if for any probability measure
ν0, ν1 P PbpXq, the Schrödinger bridge at zero temperature ppQt qtPr0,1s from ν0
to ν1, satisfies for any t P p0, 1q,

HppQt |mq ď p1´ tqHpν0|mq ` t Hpν1|mq ´
tp1´ tq

2
Ct ppπq. (2)

‚ Let K1 P R be the largest constant so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K1

´

ĳ

dpx , yq dpπpx , yq
¯2
“ K1 W1pν0, ν1q

2,

if it exists. K1 is called the W1-entropic curvature of the space pX , d ,m, Lq.
‚ Similarly, one defines the T2-entropic curvature of the space pX , d ,m, Lq

as the largest constant K2 P R so that (2) holds for any ν0, ν1, t with

Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq :“ K2 T2ppπq with c2pdq „
`8

d2.

‚ One may consider other costs, for example Ct ppπq ě rK rT2ppπq

rT2ppπq :“

«

ż
ˆ
ż

dpx , yq dpπÑ py |xq
˙2

dν0pxq `
ż
ˆ
ż

dpx , yq dpπÐ px |yq
˙2

dν1pyq

ff

,

where pπpx , yq “ ν0pxqpπÑ py |xq “ ν1pyqpπÐ px |yq.



P-M. Samson

Introduction
Entropic curvature

The slowing down
procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition
on balls

Main results
Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs
The lattice Zn

The discrete cube

The Bernoulli-Laplace
model

The Transposition model

Other graphs

Discrete entropic curvature.8

Geometric conditions on balls of radius 2 for entropic curvature
For k “ 1, 2 and z P X , let Sk pzq :“

!

w P X
ˇ

ˇ

ˇ
dpz,wq “ k

)

.

For W Ă S2pzq with W ‰ H, define

κLpz,W q :“ sup
α

$

&

%

ÿ

z2PW

L2pz, z2q
ź

z1PS1pzqXrz,z2s

ˆ

αpz1q
Lpz, z1q

˙

2Lpz,z1qLpz1,z2q
L2pz,z2q

,

.

-

pě 0q,

where the supremum runs over all α : S1pzq Ñ r0, 1s, with
ÿ

z1PS1pzq

αpz1q “ 1.

For W “ H, let κLpz,W q :“ 0.

Particular case : m “ m0 is the counting measure on X , reversible with respect
to L0 defined by L0px , yq “ 1 if and only if dpx , yq “ 1. For dpz, z2q “ 2, one
has

L2
0pz, z

2q “
ÿ

z1PS1pzqXrz,z2s

L0pz, z1qL0pz1, z2q “
ˇ

ˇS1pzq X rz, z2s
ˇ

ˇ

and therefore

κpz,W q :“ sup
α

$

&

%

ÿ

z2PW

ˇ

ˇS1pzq X rz, z2s
ˇ

ˇ

´

ź

z1PS1pzqXrz,z2s

αpz1q
¯

2
ˇ

ˇS1pzqXrz,z
2s

ˇ

ˇ

,

.

-

.

Observations :
‚ If W Ă W 1 Ă S2pzq then κpz,W q ď κpz,W 1q ď κpz,S2pzqq.
‚ If for some z20 P S2pzq, S1pzq X rz, z20 s “ tz

1
0u, then

κpz,S2pzqq ě κpz, tz20 uq “ sup
α
αpz10q

2
“ 1.
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.
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&
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ź
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-
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ˇ
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ˇ
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ź
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Discrete entropic curvature.9

Main Results

Recall our main assumptions : reversibility,

maximal degree,
inf

x,y,dpx,yq“1
Lpx , yq ą 0.

Theorem : (Rapaport-S 22’)

If κL :“ sup
zPX

κLpz,S2pzqq ă 8, then the T2-entropic curvature of pX , d ,m, Lq is

bounded from below by ´2 logpκLq ě 2p1´ κLq. Namely, the relative entropy
is C-displacement convex with for any t P p0, 1q,

Ct ppπq ě ´2 logpκLq

ĳ

dpx , yq
`

dpx , yq ´ 1
˘

dpπpx , yq.

If κL ă 1, then the space pX , d ,m, Lq has positive T2-entropic curvature.

A Bonnet-Myers Theorem

If the space pX , d ,m, Lq has positive T2-entropic curvature, then its diameter is
bounded. Therefore, the assumptions imply that X is finite.
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Discrete entropic curvature.10

Assume that κL ă 1. For z P X , let

cLpzq :“

˜

sup
W`,W´

! 1W`‰H

1´ κLpz,W`q
`

1W´‰H

1´ κLpz,W´q

)

¸´1

,

where the supremum runs over all W`,W´ Ă S2pzq,

rz,W`s X rz,W´s “ tzu.

Let
cL “ inf

zPX
cLpzq.

One has 1
2 p1´ κLq ď cL ď 1´ κL.

Theorem

If κL ă 1 then the space pX , d ,m, Lq has positive T2-entropic curvature and
also positive W1-entropic curvature, more precisely

Ct ppπq ě 4cL max
!

W1pν0, ν1q
2,

ĳ

c2pdpx , yqq dpπpx , yq
)

,

with c2pdq :“ max
!

dpd´1q
2 , d2 ´ 2dp1` log dq1d‰0

)

, d P N.
We also have

Ct ppπq ě p1´ κLq
rT2ppπq.
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Corollary : Curved Prékopa-Leindler type of inequality

Assume that on the space pX , d ,m, Lq, the C-displacement convexity property

of entropy holds with Ct ppπq ě K2

ĳ

c2pdpx , yqq dpπpx , yq.

Let t P p0, 1q. If f , g, h are real functions on X satisfying for all x , y P X ,

p1´ tqf pxq ` tgpyq ď
ż

h dQx,y
t `

K2

2
tp1´ tq c2pdpx , yqq,

then
ˆ
ż

ef dm
˙1´t ˆż

egdm
˙t
ď

ż

ehdm.

Corollary : Transport-entropy inequalities

If pX , d ,m, Lq has positive entropic curvature and the C-displacement
convexity property of entropy holds with Ct ppπq ě K Cppπq, K ě 0, then the
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Corollary : Modified logarithmic Sobolev inequality

If pX , d ,m, Lq has positive entropic curvature and the C-displacement
convexity property of entropy holds with Ct ppπq ě rK rT2ppπq, rK ą 0, then the
probability measure µ :“ m{mpX q satisfies the following modified
logarithmic-Sobolev inequality, for any non negative function f : X Ñ p0,`8q,

Entµpf q ď
1

2rK

ż

max
x1,x1„x

“

log f pxq ´ log f px 1q
‰2
`

f pxq dµpxq,

where Entµpf q “ Hpµf |µq with µf “ µ{µpf q.

Proof : Choose ν0 “ µf and let t go to 0 in the C-displacement convexity
property.
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Examples of graphs

- The lattice Zn “ X with counting measure m0

ppQt qtPr0,1s : the Schrödinger bridge at zero temperature joining ν0 to ν1
pQt pzq “

ÿ

x,yPX
Qx,y

t pzq pπpx , yq,

where for x “ px1, . . . , xnq, y “ py1, . . . , ynq,

Qx,y
t pzq “

´|y1 ´ x1|

|z1 ´ x1|

¯

¨ ¨ ¨

´|yn ´ xn|

|zn ´ xn|

¯

tdpx,zqp1´ tqdpz,yq1rx,yspzq.

For all z P Zn, κpz,S2pzqq “ 1 ñ K2 ě 0.
Bonney-Myers Theorem implies K2 “ 0, a result by E. Hillion (14’).

Another Prékopa-Leindler inequality on Z for t “ 1{2,

Theorem : Klartag-Lehec (19’)

m´px , yq “
Y

x`y
2

]

, m`px , yq “
Q

x`y
2

U

, x , y P Z.
For any functions f , g, h, k on Z satisfying

f pxq ` gpyq ď h pm´px , yqq ` k pm`px , yqq , @x , y P Z.

one has
ˆ
ż

Z
ef dm0

˙ˆ
ż

Z
eg dm0

˙

ď

ˆ
ż
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Discrete entropic curvature.15

Measure with potential interaction (work in progress)
µV “ e´V m0 : a probability density with potential interaction V : t0, 1un Ñ R.

One has

HppQt |µV q :“ HppQt |m0q ` ϕptq, with ϕptq “
ż

V d pQt .

ϕ2 can be computed explicitly : ϕ2ptq “
ĳ

pϕx,y q2ptq dpπpx , yq, with
pϕx,y q2ptq :“

dpx , yqpdpx , yq´1q
ÿ

pz,z2qPrx,ys,dpz,z2q“2

∆V pz, z2q
Ldpx,zq

0 px , zqL2
0pz, z

2qLdpz2,yq
0 pz2, yq

Ldpx,yq
0 px , yq

,

and
∆V pz, z2q “

ÿ

z1Prz,z2s

`

V pzq ` V pz2q ´ 2V pz1q
˘ L0pz, z1qL0pz1, z2q

L2
0pz, z

2q
.

Example on t0, 1un : for V pzq “ xz,Azy ` xb, zy ` C, where A “ pAij qi,j is
n ˆ n symmetric matrix with 0 diagonal, b P Rn, C P R.
For any i ‰ j , one has

∆V pz, σiσj pzqq “ V pσiσj pzqq ` V pzq ´ V pσi pzqq ´ V pσj pzqq

“ 2p2zi ´ 1qp2zj ´ 1qAij ,

from which we get ϕ2ptq ě 2λminpAq
ĳ

dpx , yq dpπpx , yq, with λminpAq ď 0.

It follows that Hp¨|µV q satisfies the C-displacement convexity property with

Ct ppπq ě
2
n

ĳ

dpx , yqpdpx , yq ´ 1qdpπpx , yq ` 2λminpAq
ĳ

dpx , yq dpπpx , yq.
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“ 2p2zi ´ 1qp2zj ´ 1qAij ,

from which we get ϕ2ptq ě 2λminpAq
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dpx , yq dpπpx , yq, with λminpAq ď 0.

It follows that Hp¨|µV q satisfies the C-displacement convexity property with

Ct ppπq ě
2
n

ĳ

dpx , yqpdpx , yq ´ 1qdpπpx , yq ` 2λminpAq
ĳ

dpx , yq dpπpx , yq.
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Discrete entropic curvature.16

- The Bernoulli-Laplace model.

m0 is the counting measure on a slice of the discrete cube t0, 1un of order
k P rns :

X “ Xk :“
 

x “ px1, . . . , xnq P t0, 1u
ˇ

ˇ x1 ` . . .` xn “ k
(

.

For z P Xk , I0pzq :“ ti P rns | zi “ 0u, I1pzq :“ ti P rns | zi “ 1u.
For i P I0pzq, j P I1pzq, σij pzq a neighbour of z obtained exchanging zi and zj .
The graph distance is given by dpx , yq :“ 1

2
řn

i“1 1xi‰yi , x , y P Xk .
The Schrödinger bridge at zero temperature is given by

Qx,y
t pzq “

´dpx , yq
dpx , zq

¯´1
tdpx,zqp1´ tqdpz,yq1rx,yspzq, z P Xk .

Results : For any z P t0, 1un, κpz,S2pzqq “ 1´ 1
minpk,n´kq ,

and cL0 pzq “
1

minpk,n´kq ñ K1 ě
4

minpk,n´kq , K2 ě
4

minpk,n´kq .

Comparison : Erbar-Maas entropic curvature : n`2
kpn´kq ď

4
minpk,n´kq , equality

for pk , nq “ p1, 2q.

- The transposition model : m0 is the counting measure on the symmetric
group Sn “ X , n ě 2.
Two permutations x and y of the set rns are neighbours if xy´1 is a
transposition. cL0 pzq “

2
npn´1q ñ K1 ě

8
npn´1q , K2 ě

8
npn´1q .

Comparison : Erbar-Maas entropic curvature : the same lower bound.
A lower bound of order Cste{n could be expected, du to known W1-transport
entropy inequality and modified Logarithmic Sobolev inequality for
µ0 “ m0{m0pSnq.
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- The multinomial distribution µ on the set

X :“ tpx1, . . . xd q, xi P N,
d
ÿ

i“1

xi “ Nu, µpxq :“
N!

dN
śd

i“1 xi !
, x P X .

K1 ě
2
N
, K2 ě

2
N
.

- The complete graph, the circle, ...

- One may also consider graphs with non-positive T2-entropic curvature : The
so-called geodetic graphs (only one discrete geodesic between two vertices)
like the trees :

´2 log
`

1` rmax
zPX

Degpzq ´ 2s`
˘

ď K2 ď 0.
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Discrete entropic curvature.18

Open questions - work in progress :
‚ Find new connections between curvature along W1-geodesics and

modified logarithmic Sobolev inequalities for Cayley graphs.
‚ Consider measures on graphs with potential interactions.
‚ Find connections between entropic curvature and Ollivier or Lin-Lu-Yau

definition of Ricci curvature on graphs.

Thank you.
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