Criteria for entropic curvature on graphs along Schrödinger bridges at zero temperature.

Entropic curvature along Schrödinger bridges at zero temperature, ArXiv
 Forthcoming preprint : joint work with Martin Rapaport

Institut Henri Poincaré, Paris

Phenomena in High Dimension

June 2022

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

P-M. Samson Université Gustave Eiffel

Discrete entropic curvature.1

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}

- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{p}(\nu_{s},\nu_{t})=(t-s)W_{p}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{\rho}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{p}(\nu_{s},\nu_{t})=(t-s)W_{p}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

Lott-Sturm-Villani definition of entropic curvature of a geodesic space (\mathcal{X}, d) equipped with a reference measure $m \in \mathcal{M}_+(\mathcal{X})$:

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty]$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{p}(\nu_{s},\nu_{t})=(t-s)W_{p}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

Lott-Sturm-Villani definition of entropic curvature of a geodesic space (\mathcal{X}, d) equipped with a reference measure $m \in \mathcal{M}_+(\mathcal{X})$:

The entropic curvature of (\mathcal{X}, d, m) is lower bounded by $K \in \mathbb{R}$ if for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$, there exists a constant speed W_2 -geodesic $(\nu_t)_{t \in [0,1]}$ from ν_0 to ν_1 such that for all $t \in [0, 1]$,

$$H(\nu_t|\mathbf{m}) \leq (1-t) H(\nu_0|\mathbf{m}) + t H(\nu_1|\mathbf{m}) - \frac{\kappa}{2} t(1-t) W_2^2(\nu_0,\nu_1).$$
(1)

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty].$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{p}(\nu_{s},\nu_{t})=(t-s)W_{p}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

Lott-Sturm-Villani definition of entropic curvature of a geodesic space (\mathcal{X}, d) equipped with a reference measure $m \in \mathcal{M}_+(\mathcal{X})$:

The entropic curvature of (\mathcal{X}, d, m) is lower bounded by $K \in \mathbb{R}$ if for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$, there exists a constant speed W_2 -geodesic $(\nu_t)_{t \in [0,1]}$ from ν_0 to ν_1 such that for all $t \in [0, 1]$,

$$H(\nu_t|\mathbf{m}) \leq (1-t) H(\nu_0|\mathbf{m}) + t H(\nu_1|\mathbf{m}) - \frac{\kappa}{2} t(1-t) W_2^2(\nu_0,\nu_1).$$
(1)

Results : McCann (97') : K = 0 on the Euclidean space.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty].$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{\rho}(\nu_{s},\nu_{t})=(t-s)W_{\rho}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

Lott-Sturm-Villani definition of entropic curvature of a geodesic space (\mathcal{X}, d) equipped with a reference measure $m \in \mathcal{M}_+(\mathcal{X})$:

The entropic curvature of (\mathcal{X}, d, m) is lower bounded by $K \in \mathbb{R}$ if for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$, there exists a constant speed W_2 -geodesic $(\nu_t)_{t \in [0,1]}$ from ν_0 to ν_1 such that for all $t \in [0, 1]$,

$$H(\nu_t|\mathbf{m}) \leq (1-t) H(\nu_0|\mathbf{m}) + t H(\nu_1|\mathbf{m}) - \frac{\kappa}{2} t(1-t) W_2^2(\nu_0,\nu_1).$$
(1)

Results : McCann (97') : K = 0 on the Euclidean space. Otto-Villani (00), Cordero-McCann-Schmuckenschläger (01'), von Renesse-Sturm (05'),

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- $\mathcal{M}_+(\mathcal{Y})$: the set of positive σ -finite measures on a measurable space \mathcal{Y}
- $\mathcal{P}(\mathcal{Y})$: the set of all probability measures on \mathcal{Y} .
- Given $q, r \in \mathcal{P}(\mathcal{Y})$, the relative entropy

$$H(q|r) := \int_{\mathcal{Y}} \log(dq/dr) \, dq \qquad \in [0,\infty].$$

This definition extends to $r \in \mathcal{M}_+(\mathcal{Y})$.

- (\mathcal{X}, d) a metric space. Given $\nu_0, \nu_1 \in \mathcal{P}_p(\mathcal{X})$,

$$W_{p}(\nu_{0},\nu_{1}) := \left(\inf_{\pi \in \Pi(\nu_{0},\nu_{1})} \iint d(x,y)^{p} d\pi(x,y), \right)^{1/p}, \qquad p = 1,2$$

- $(\nu_t)_{t \in [0,1]} \subset \mathcal{P}_p(\mathcal{X})$ is a constant speed W_p -geodesic from ν_0 to ν_1 if

$$W_{\rho}(\nu_{s},\nu_{t})=(t-s)W_{\rho}(\nu_{0},\nu_{1}), \quad \forall \ 0\leqslant s\leqslant t\leqslant 1.$$

Lott-Sturm-Villani definition of entropic curvature of a geodesic space (\mathcal{X}, d) equipped with a reference measure $m \in \mathcal{M}_+(\mathcal{X})$:

The entropic curvature of (\mathcal{X}, d, m) is lower bounded by $K \in \mathbb{R}$ if for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$, there exists a constant speed W_2 -geodesic $(\nu_t)_{t \in [0,1]}$ from ν_0 to ν_1 such that for all $t \in [0, 1]$,

$$H(\nu_t|\mathbf{m}) \le (1-t) H(\nu_0|\mathbf{m}) + t H(\nu_1|\mathbf{m}) - \frac{\kappa}{2} t(1-t) W_2^2(\nu_0,\nu_1).$$
(1)

Results : McCann (97') : K = 0 on the Euclidean space. Otto-Villani (00), Cordero-McCann-Schmuckenschläger (01'), von Renesse-Sturm (05'), Lott-Villani (09')-Sturm (06') : If (\mathcal{X}, d) is a Riemaniann manifold, $m = e^{-V} Vol$

(1) \Leftrightarrow Bakry-Emery curvature condition $CD(K, \infty)$: Ricc + Hess(V) \ge K.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Discrete entropic curvature.2

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on \mathcal{X}

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice 2ⁿ The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on $\mathcal X$

A new distance \mathcal{W}_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on \mathcal{X}

A new distance W_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$. One has $W_{EM} \ge \sqrt{2} W_1$.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on \mathcal{X}

A new distance \mathcal{W}_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$. One has $\mathcal{W}_{EM} \ge \sqrt{2} W_1$. W_2 -geodesics are replaced by \mathcal{W}_{EM} -geodesics in the convexity property of entropy.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on $\mathcal X$

A new distance \mathcal{W}_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$. One has $\mathcal{W}_{EM} \ge \sqrt{2} W_1$. W_2 -geodesics are replaced by \mathcal{W}_{EM} -geodesics in the convexity property of entropy.

- We propose in this talk a second global entropic approach following the works by Léonard (13',16',17'), Hillion (14',17') and Gozlan-Roberto-S-Tetali (14').

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces
- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube
- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on $\mathcal X$

A new distance \mathcal{W}_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$. One has $\mathcal{W}_{EM} \ge \sqrt{2} W_1$. W_2 -geodesics are replaced by \mathcal{W}_{EM} -geodesics in the convexity property of entropy.

- We propose in this talk a second global entropic approach following the works by Léonard (13',16',17'), Hillion (14',17') and Gozlan-Roberto-S-Tetali (14').

 W_2 -geodesics are replaced by W_1 -geodesics called *Schrödinger briges at zero* temperature and denoted by $(\hat{Q}_t)_{t \in [0,1]}$ throughout this presentation.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

- Bonciocat-Sturm (09') : rough curvature for discrete spaces

- Ollivier-Villani (12') Brunn-Minkowski on the discrete hypercube cube

- Erbar-Maas (11',12',14') , Mielke (13') : a first global entropic approach as m is a unique invariant probability measure of a Markov kernel on $\mathcal X$

A new distance \mathcal{W}_{EM} is defined using a discrete analogue of the Benamou Brenier formula for W_2 , in order to provide a Riemannian structure for the probability space $\mathcal{P}(\mathcal{X})$. One has $\mathcal{W}_{EM} \ge \sqrt{2} W_1$. W_2 -geodesics are replaced by \mathcal{W}_{EM} -geodesics in the convexity property of entropy.

- We propose in this talk a second global entropic approach following the works by Léonard (13',16',17'), Hillion (14',17') and Gozlan-Roberto-S-Tetali (14').

 W_2 -geodesics are replaced by W_1 -geodesics called *Schrödinger briges at zero* temperature and denoted by $(\hat{Q}_t)_{t \in [0,1]}$ throughout this presentation.

- many other papers dealing with Erbar-Maas entropic approach, and also many recent papers dealing with Bakry-Emery conditions on graphs.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 Ω : set of paths drawn on \mathcal{X} between time 0 and 1 : $\Omega = \{\omega \mid \omega : [0, 1] \rightarrow \mathcal{X}\}.$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 Ω : set of paths drawn on \mathcal{X} between time 0 and 1 : $\Omega = \{ \omega \mid \omega : [0, 1] \to \mathcal{X} \}$. $X_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X}$: the projection map.

P-M. Samson

Introduction

Entropic curvature
The slowing down
procedure
The discrete setting
Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and } 1: \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t: \omega \in \Omega \mapsto \omega_t \in \mathcal{X}: \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t # Q$ is the law of ω_t ,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

P-M. Samson

Introduction

Entropic curvature
The slowing down
procedure
The discrete setting
Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

• Continuous case : $(\mathcal{X}, d) = (\mathbb{R}^d, |\cdot|).$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

• Continuous case : $(\mathcal{X}, d) = (\mathbb{R}^d, |\cdot|)$. Fixe $\gamma > 0$ temperature parameter.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice 2ⁿ The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\hat{Q}^{\gamma}|R^{\gamma}),$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_2^2(\nu_0,\nu_1) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_0 = \nu_0, Q_1 = \nu_1 \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\widehat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_2^2(\nu_0,\nu_1) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_0 = \nu_0, Q_1 = \nu_1 \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}$,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_2^2(\nu_0,\nu_1) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_0 = \nu_0, Q_1 = \nu_1 \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_2^2(\nu_0,\nu_1) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_0 = \nu_0, Q_1 = \nu_1 \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\widehat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\widehat{Q} := \lim_{\gamma \to 0} \widehat{Q}^{\gamma}, (\widehat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,

 $L^{\gamma} = \gamma L,$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,

 $L^{\gamma} = \gamma L, \quad m \in \mathcal{M}_{+}(\mathcal{X})$ reversible with respect to *L*.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

- The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,
 - $\begin{array}{l} L^{\gamma} = \gamma L, \quad m \in \mathcal{M}_{+}(\mathcal{X}) \text{ reversible with respect to } L. \\ W_{2}^{2} \leftrightarrow W_{1}, \quad \gamma H(\hat{Q}^{\gamma} | R^{\gamma}) \leftrightarrow 1/\log(1/\gamma) H(\hat{Q}^{\gamma} | R^{\gamma}) \end{array}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs
What do we call "Schrödinger briges at zero temperature"?

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,

$$\begin{array}{l} L^{\gamma} = \gamma L, \quad m \in \mathcal{M}_{+}(\mathcal{X}) \text{ reversible with respect to } L. \\ W_{2}^{2} \leftrightarrow W_{1}, \quad \gamma H(\hat{Q}^{\gamma} | R^{\gamma}) \leftrightarrow 1/\log(1/\gamma) H(\hat{Q}^{\gamma} | R^{\gamma}) \\ \text{Setting } \hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_{t})_{t \in [0,1]} \text{ is a } W_{1} \text{-geodesic from } \nu_{0} \text{ to } \nu_{1} \end{array}$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

What do we call "Schrödinger briges at zero temperature"?

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : \mathcal{X} the set of vertices of a connected graph, *d* the graph distance,

$$\begin{array}{l} L^{\gamma} = \gamma L, \quad m \in \mathcal{M}_{+}(\mathcal{X}) \text{ reversible with respect to } L.\\ W_{2}^{2} \leftrightarrow W_{1}, \quad \gamma H(\hat{Q}^{\gamma}|R^{\gamma}) \leftrightarrow 1/\log(1/\gamma)H(\hat{Q}^{\gamma}|R^{\gamma})\\ \text{Setting } \hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_{t})_{t \in [0,1]} \text{ is a } W_{1} \text{-geodesic from } \nu_{0} \text{ to } \nu_{1}\\ \hat{\pi} := \hat{Q}_{0,1} \text{ is a } W_{1} \text{-optimal coupling of } \nu_{0} \text{ and } \nu_{1}. \end{array}$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

What do we call "Schrödinger briges at zero temperature"?

 $\begin{array}{l} \Omega: \text{set of paths drawn on } \mathcal{X} \text{ between time 0 and 1} : \Omega = \{ \omega \, | \, \omega : [0,1] \rightarrow \mathcal{X} \}. \\ \mathcal{X}_t : \omega \in \Omega \mapsto \omega_t \in \mathcal{X} : \text{the projection map.} \end{array}$

Given a probability Q on the path space Ω , let us choose at random a path ω with respect to Q, then $Q_t := X_t \# Q$ is the law of ω_t , and $Q_{0,1} := (X_0, X_1) \# Q$ is the coupling law of (ω_0, ω_1) with marginals Q_0 and Q_1 .

Based on works by C. Léonard (13',16',17') : the slowing down procedure.

 Continuous case : (X, d) = (ℝ^d, |·|). Fixe γ > 0 temperature parameter. *R*^γ ∈ *M*₊(Ω) : reference path measure, the Markov measure with semigroup generator *L*^γ = γΔ and initial reversible measure *dm* = *dx*, the Lebesgue measure on ℝ^d. Result : (Mikami 04', Léonard 12')

$$W_{2}^{2}(\nu_{0},\nu_{1}) = \lim_{\gamma \to 0} \left[\gamma \min_{Q \in \mathcal{P}(\Omega)} \left\{ H(Q|R^{\gamma}) \, \middle| \, Q_{0} = \nu_{0}, Q_{1} = \nu_{1} \right\} \right] = \lim_{\gamma \to 0} \gamma H(\widehat{Q}^{\gamma}|R^{\gamma}),$$

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$: a Schrödinger bridge from ν_0 to ν_1 , an entropic interpolation. Setting $\hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_t)_{t \in [0,1]}$ is a W_2 -geodesic from ν_0 to ν_1

• The discrete case : X the set of vertices of a connected graph, d the graph distance,

 $\begin{array}{l} L^{\gamma} = \gamma L, \quad m \in \mathcal{M}_{+}(\mathcal{X}) \text{ reversible with respect to } L. \\ W_{2}^{2} \leftrightarrow W_{1}, \quad \gamma H(\hat{Q}^{\gamma}|R^{\gamma}) \leftrightarrow 1/\log(1/\gamma)H(\hat{Q}^{\gamma}|R^{\gamma}) \\ \text{Setting } \hat{Q} := \lim_{\gamma \to 0} \hat{Q}^{\gamma}, (\hat{Q}_{t})_{t \in [0,1]} \text{ is a } W_{1} \text{-geodesic from } \nu_{0} \text{ to } \nu_{1}. \\ \hat{\pi} := \hat{Q}_{0,1} \text{ is a } W_{1} \text{-optimal coupling of } \nu_{0} \text{ and } \nu_{1}. \end{array}$

 W_p -geodesics are obtained as limits of sequences of entropic interpolations.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Discrete entropic curvature.4

- *d* : graph distance,
- L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

P-M. Samson

Introduction

Entropic curvature

The slowing down procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

P-M. Samson

Introduction

Entropic curvature

The slowing down

procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m*: invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

Additionnal assumption : L(x, y) > 0 iff d(x, y) = 1 ($x \sim y$)

P-M. Samson

Introduction

Entropic curvature

The slowing down

procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

Additionnal assumption : L(x, y) > 0 iff d(x, y) = 1 $(x \sim y)$

Result : From the Markov property, and since \hat{Q}^{γ} is the optimizer of the Schrödinger problem, the Schrödinger bridge $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ can be expressed as follows : for $z \in \mathcal{X}$

$$\widehat{Q}_{t}^{\gamma}(z) = P_{\gamma t} f^{\gamma}(z) P_{\gamma(1-t)} g^{\gamma}(z) m(z)$$

P-M. Samson

Introduction

Entropic curvature The slowing down

procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

Additionnal assumption : L(x, y) > 0 iff d(x, y) = 1 $(x \sim y)$

Result : From the Markov property, and since \hat{Q}^{γ} is the optimizer of the Schrödinger problem, the Schrödinger bridge $(\hat{Q}_{t}^{\gamma})_{t \in [0,1]}$ can be expressed as follows : for $z \in \mathcal{X}$

$$\widehat{Q}_{t}^{\gamma}(z) = P_{\gamma t} f^{\gamma}(z) P_{\gamma(1-t)} g^{\gamma}(z) m(z) = \sum_{x,y \in \mathcal{X}} \frac{P_{\gamma t}(x,z) P_{\gamma(1-t)}(z,y)}{P_{\gamma}(x,z)} \widehat{Q}_{0,1}^{\gamma}(x,y),$$

where f^{γ} and g^{γ} are non-negative functions satisfying the *Schrödinger system*

$$\begin{cases} f^{\gamma}(x) P_{\gamma} g^{\gamma}(x) = h_0(x), & \nu_0(x) = h_0(x)m(x) \\ g^{\gamma}(y) P_{\gamma} f^{\gamma}(y) = h_1(y), & \nu_1(y) = h_1(y)m(y) \end{cases} \quad \forall x, y \in \mathcal{X}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

Additionnal assumption : L(x, y) > 0 iff d(x, y) = 1 ($x \sim y$)

Result : From the Markov property, and since \hat{Q}^{γ} is the optimizer of the Schrödinger problem, the Schrödinger bridge $(\hat{Q}^{\gamma}_t)_{t \in [0,1]}$ can be expressed as follows : for $z \in \mathcal{X}$

$$\widehat{Q}_{t}^{\gamma}(z) = P_{\gamma t} f^{\gamma}(z) P_{\gamma(1-t)} g^{\gamma}(z) m(z) = \sum_{x,y \in \mathcal{X}} \frac{P_{\gamma t}(x,z) P_{\gamma(1-t)}(z,y)}{P_{\gamma}(x,z)} \widehat{Q}_{0,1}^{\gamma}(x,y),$$

where f^{γ} and g^{γ} are non-negative functions satisfying the *Schrödinger system*

$$\begin{cases} f^{\gamma}(x) P_{\gamma} g^{\gamma}(x) = h_0(x), & \nu_0(x) = h_0(x)m(x) \\ g^{\gamma}(y) P_{\gamma} f^{\gamma}(y) = h_1(y), & \nu_1(y) = h_1(y)m(y) \end{cases} \quad \forall x, y \in \mathcal{X}.$$

If L is uniformly bounded,

$$\mathcal{P}_{\gamma t}(x,y) := e^{\gamma t L}(x,y) = \sum_{k \in \mathbb{N}} \frac{(t\gamma)^k}{k!} L^k(x,y) = \gamma^{d(x,y)} \frac{t^{d(x,y)} L^{d(x,y)}(x,y)}{d(x,y)!} + o(\gamma^{d(x,y)}).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

d : graph distance,

L : generator of a Markov process on \mathcal{X}

 $L^{\gamma} = \gamma L, \gamma > 0,$ *m* : invariante reversible measure.

 $P_t, t \ge 0$: the Markov semi-group associated to L:

$$P_t f(x) := \sum_{y \in \mathcal{X}} f(y) P_t(x, y), \quad L(x, y) := \lim_{t \to 0} \frac{P_t(x, y) - P_0(x, y)}{t}.$$

Additionnal assumption : L(x, y) > 0 iff d(x, y) = 1 $(x \sim y)$

Result : From the Markov property, and since \hat{Q}^{γ} is the optimizer of the Schrödinger problem, the Schrödinger bridge $(\hat{Q}_{t}^{\gamma})_{t \in [0,1]}$ can be expressed as follows : for $z \in \mathcal{X}$

$$\widehat{Q}_{t}^{\gamma}(z) = P_{\gamma t} f^{\gamma}(z) P_{\gamma(1-t)} g^{\gamma}(z) m(z) = \sum_{x,y \in \mathcal{X}} \frac{P_{\gamma t}(x,z) P_{\gamma(1-t)}(z,y)}{P_{\gamma}(x,z)} \widehat{Q}_{0,1}^{\gamma}(x,y),$$

where f^{γ} and g^{γ} are non-negative functions satisfying the *Schrödinger system*

$$\begin{cases} f^{\gamma}(x) P_{\gamma} g^{\gamma}(x) = h_0(x), & \nu_0(x) = h_0(x) m(x) \\ g^{\gamma}(y) P_{\gamma} f^{\gamma}(y) = h_1(y), & \nu_1(y) = h_1(y) m(y) \end{cases} \quad \forall x, y \in \mathcal{X}.$$

If L is uniformly bounded,

$$\mathcal{P}_{\gamma t}(x,y) := e^{\gamma t L}(x,y) = \sum_{k \in \mathbb{N}} \frac{(t\gamma)^k}{k!} L^k(x,y) = \gamma^{d(x,y)} \frac{t^{d(x,y)} L^{d(x,y)}(x,y)}{d(x,y)!} + o(\gamma^{d(x,y)}).$$

It implies as $\gamma \rightarrow 0$,

$$\widehat{Q}_t(z) = \sum_{x,y \in \mathcal{X}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y), \quad \text{with} \quad \iint d(x,y) \, d\widehat{\pi}(x,y) = W_1(\nu_0,\nu_1).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Discrete entropic curvature.5

Structure of the "Schrödinger briges at zero temperature"

$$\widehat{Q}_t(z) = \sum_{x,y \in \mathcal{X}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y)$$

P-M. Samson

Introduction

Entropic curvature

The slowing down

procedure

The discrete setting

Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Structure of the "Schrödinger briges at zero temperature"

$$\widehat{Q}_t(z) = \sum_{x,y \in \mathcal{X}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$$

where $(Q_t^{\chi,y})_{t \in [0,1]}$ is the binomial path from δ_x to δ_y defined by

$$Q_t^{x,y}(z) := \mathbb{1}_{[x,y]}(z) r(x,z,y) \rho_t^{d(x,y)}(d(x,z)), \quad z \in \mathcal{X},$$

with for any $x, z, y \in \mathcal{X}$,

 $\begin{array}{l} - [x,y] \text{ is the set of all points that belongs to a discrete geodesic from x to y,} \\ - r(x,z,y) := \frac{L^{d(x,z)}(x,z)L^{d(z,y)}(z,y)}{L^{d(x,y)}(x,y)}, \end{array}$

- ρ_t^d denotes the binomial law with parameters $t \in [0, 1]$ and $d \in \mathbb{N}$:

$$\rho_t^d(k) := \binom{d}{k} t^k (1-t)^{d-k}, \quad k \in \{0, \dots, d\}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Structure of the "Schrödinger briges at zero temperature"

$$\widehat{Q}_t(z) = \sum_{x,y \in \mathcal{X}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$$

where $(Q_t^{\chi,y})_{t \in [0,1]}$ is the binomial path from δ_x to δ_y defined by

$$Q_t^{x,y}(z) := \mathbb{1}_{[x,y]}(z) r(x,z,y) \rho_t^{d(x,y)}(d(x,z)), \quad z \in \mathcal{X},$$

with for any $x, z, y \in \mathcal{X}$,

 $\begin{array}{l} - [x,y] \text{ is the set of all points that belongs to a discrete geodesic from } x \text{ to } y, \\ - r(x,z,y) := \frac{L^{d(x,z)}(x,z)L^{d(z,y)}(z,y)}{L^{d(x,y)}(x,y)}, \end{array}$

- ρ_t^d denotes the binomial law with parameters $t \in [0, 1]$ and $d \in \mathbb{N}$:

$$\rho_t^d(k) := \binom{d}{k} t^k (1-t)^{d-k}, \quad k \in \{0, \dots, d\}.$$

Interpretation : Let d = d(x, y) and N_t be a binomial random variable with law ρ_t^d . Let $\Gamma = (\Gamma_0, \dots, \Gamma_d)$ be a random discrete geodesic from x to y, independent of N_t with law

$$\mathbb{P}(\Gamma = \alpha) = \frac{L(\alpha_0, \alpha_1) \cdots L(\alpha_{d-1}, \alpha_d)}{L^{d(x, y)}(x, y)}, \quad \text{if } \alpha = (\alpha_0, \alpha_1, \dots, \alpha_d).$$

Then \hat{Q}_t is the law of Γ_{N_t} .

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\widehat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\widehat{Q}_t|\mathbf{m}) \leq (1-t)H(\nu_0|\mathbf{m}) + tH(\nu_1|\mathbf{m}) - \frac{t(1-t)}{2}C_t(\widehat{\pi}).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

(2)

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\hat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\hat{Q}_{t}|m) \leq (1-t)H(\nu_{0}|m) + tH(\nu_{1}|m) - \frac{t(1-t)}{2}C_{t}(\hat{\pi}).$$
(2)

• Let $K_1 \in \mathbb{R}$ be the largest constant so that (2) holds for any ν_0, ν_1, t with

$$C_t(\hat{\pi}) \geq K_1 \Big(\iint d(x,y) \, d\hat{\pi}(x,y) \Big)^2 = K_1 \, W_1(\nu_0,\nu_1)^2,$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\hat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\hat{Q}_{t}|m) \leq (1-t)H(\nu_{0}|m) + tH(\nu_{1}|m) - \frac{t(1-t)}{2}C_{t}(\hat{\pi}).$$
(2)

• Let $K_1 \in \mathbb{R}$ be the largest constant so that (2) holds for any ν_0, ν_1, t with

$$C_t(\hat{\pi}) \geq K_1\left(\iint d(x,y) \, d\hat{\pi}(x,y)\right)^2 = K_1 \, W_1(\nu_0,\nu_1)^2,$$

if it exists.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\hat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\hat{Q}_{t}|m) \leq (1-t)H(\nu_{0}|m) + tH(\nu_{1}|m) - \frac{t(1-t)}{2}C_{t}(\hat{\pi}).$$
⁽²⁾

• Let $K_1 \in \mathbb{R}$ be the largest constant so that (2) holds for any ν_0, ν_1, t with

$$C_t(\widehat{\pi}) \geq K_1 \Big(\iint d(x,y) \, d\widehat{\pi}(x,y) \Big)^2 = K_1 \, W_1(\nu_0,\nu_1)^2,$$

if it exists. K_1 is called *the* W_1 *-entropic curvature* of the space (\mathcal{X}, d, m, L) .

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

00

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\hat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\hat{Q}_t|m) \leq (1-t)H(\nu_0|m) + tH(\nu_1|m) - \frac{t(1-t)}{2}C_t(\hat{\pi}).$$
 (2)

• Let $K_1 \in \mathbb{R}$ be the largest constant so that (2) holds for any ν_0, ν_1, t with

$$C_{\mathsf{f}}(\widehat{\pi}) \geq K_{\mathsf{1}} \Big(\iint d(x,y) \, d\widehat{\pi}(x,y) \Big)^2 = K_{\mathsf{1}} \, W_{\mathsf{1}}(\nu_0,\nu_1)^2,$$

if it exists. K_1 is called *the* W_1 *-entropic curvature* of the space (\mathcal{X}, d, m, L) .

• Similarly, one defines the T_2 -entropic curvature of the space (\mathcal{X}, d, m, L) as the largest constant $K_2 \in \mathbb{R}$ so that (2) holds for any ν_0, ν_1, t with

$$C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x,y)) \, d\hat{\pi}(x,y) := K_2 \, T_2(\hat{\pi}) \quad \text{with} \quad c_2(d) \underset{+\infty}{\sim} d^2.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measure $\nu_0, \nu_1 \in \mathcal{P}_b(X)$, the Schrödinger bridge at zero temperature $(\widehat{Q}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0, 1)$,

$$H(\hat{Q}_{t}|m) \leq (1-t)H(\nu_{0}|m) + tH(\nu_{1}|m) - \frac{t(1-t)}{2}C_{t}(\hat{\pi}).$$
⁽²⁾

• Let $K_1 \in \mathbb{R}$ be the largest constant so that (2) holds for any ν_0, ν_1, t with

$$C_{\mathsf{f}}(\widehat{\pi}) \geq K_{\mathsf{1}} \Big(\iint d(x,y) \, d\widehat{\pi}(x,y) \Big)^2 = K_{\mathsf{1}} \, W_{\mathsf{1}}(\nu_0,\nu_1)^2,$$

if it exists. K_1 is called *the* W_1 *-entropic curvature* of the space (\mathcal{X}, d, m, L) .

• Similarly, one defines the T_2 -entropic curvature of the space (\mathcal{X}, d, m, L) as the largest constant $K_2 \in \mathbb{R}$ so that (2) holds for any ν_0, ν_1, t with

$$C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x,y)) d\hat{\pi}(x,y) := K_2 T_2(\hat{\pi}) \quad \text{with} \quad c_2(d) \underset{+\infty}{\sim} d^2.$$

• One may consider other costs, for example $C_t(\hat{\pi}) \ge \widetilde{K} \widetilde{T}_2(\hat{\pi})$

00

$$\widetilde{T}_{2}(\widehat{\pi}) := \left[\int \left(\int d(x,y) \, d\widehat{\pi}_{\rightarrow}(y|x) \right)^{2} d\nu_{0}(x) + \int \left(\int d(x,y) \, d\widehat{\pi}_{\leftarrow}(x|y) \right)^{2} d\nu_{1}(y) \right]$$

where $\widehat{\pi}(x,y) = \nu_{0}(x) \widehat{\pi}_{\rightarrow}(y|x) = \nu_{1}(y) \widehat{\pi}_{\leftarrow}(x|y).$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

$\begin{array}{l} \textbf{Geometric conditions on balls of radius 2 for entropic curvature} \\ \textbf{For } k = 1,2 \text{ and } z \in \mathcal{X}, \text{ let } \quad \begin{array}{l} S_k(z) := \Big\{ w \in \mathcal{X} \ \Big| \ d(z,w) = k \Big\}. \end{array}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Discrete entropic curvature.8

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(z,W) := \sup_{\alpha} \left\{ \sum_{z'' \in W} L^{2}(z,z'') \prod_{z' \in S_{1}(z) \cap [z,z'']} \left(\frac{\alpha(z')}{L(z,z')} \right)^{\frac{2L(z,z')L(z',z'')}{L^{2}(z,z'')}} \right\} \ (\geq 0),$$

where the supremum runs over all $\alpha : S_1(z) \to [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \mathcal{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')} \right\} \ (\geq 0),$$

where the supremum runs over all $\alpha : S_1(z) \rightarrow [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model

The Transposition model

Other graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \boldsymbol{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')}} \right\} \ (\geq 0)$$

where the supremum runs over all $\alpha : S_1(z) \rightarrow [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \boldsymbol{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')}} \right\} \ (\geq 0)$$

where the supremum runs over all $\alpha : S_1(z) \to [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1. For d(z, z'') = 2, one has

$$L_0^2(z, z'') = \sum_{z' \in S_1(z) \cap [z, z'']} L_0(z, z') L_0(z', z'') = |S_1(z) \cap [z, z'']|$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \boldsymbol{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')}} \right\} \ (\geq 0)$$

where the supremum runs over all $\alpha : S_1(z) \to [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1. For d(z, z'') = 2, one has

$$L_0^2(z, z'') = \sum_{z' \in S_1(z) \cap [z, z'']} L_0(z, z') L_0(z', z'') = |S_1(z) \cap [z, z'']|$$

and therefore

$$\kappa(z, W) := \sup_{\alpha} \left\{ \sum_{z'' \in W} |S_1(z) \cap [z, z'']| \Big(\prod_{z' \in S_1(z) \cap [z, z'']} \alpha(z') \Big)^{\frac{2}{|S_1(z) \cap [z, z'']|}} \right\}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \boldsymbol{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')}} \right\} \quad (\geq 0)$$

where the supremum runs over all $\alpha : S_1(z) \to [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1. For d(z, z'') = 2, one has

$$L_0^2(z, z'') = \sum_{z' \in S_1(z) \cap [z, z'']} L_0(z, z') L_0(z', z'') = |S_1(z) \cap [z, z'']|$$

and therefore

$$\kappa(z, W) := \sup_{\alpha} \left\{ \sum_{z'' \in W} \left| S_1(z) \cap [z, z''] \right| \left(\prod_{z' \in S_1(z) \cap [z, z'']} \alpha(z') \right)^{\frac{2}{\left| S_1(z) \cap [z, z''] \right|}} \right\}.$$

Observations :

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}$. For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{\boldsymbol{L}}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \mathcal{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')} \right\} \ (\geq 0),$$

where the supremum runs over all $\alpha : S_1(z) \to [0, 1]$, with $\sum_{z' \in S_1(z)} \alpha(z') = 1$.

For $W = \emptyset$, let $\kappa_L(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1. For d(z, z'') = 2, one has

$$L_0^2(z, z'') = \sum_{z' \in S_1(z) \cap [z, z'']} L_0(z, z') L_0(z', z'') = |S_1(z) \cap [z, z'']|$$

and therefore

$$\kappa(z, W) := \sup_{\alpha} \left\{ \sum_{z'' \in W} \left| S_1(z) \cap [z, z''] \right| \left(\prod_{z' \in S_1(z) \cap [z, z'']} \alpha(z') \right)^{\frac{2}{\left| S_1(z) \cap [z, z''] \right|}} \right\}$$

Observations :

• If $W \subset W' \subset S_2(z)$ then $\kappa(z, W) \leq \kappa(z, W') \leq \kappa(z, S_2(z))$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

For k = 1, 2 and $z \in \mathcal{X}$, let $S_k(z) := \{ w \in \mathcal{X} \mid d(z, w) = k \}.$ For $W \subset S_2(z)$ with $W \neq \emptyset$, define

$$\kappa_{L}(\boldsymbol{z},\boldsymbol{W}) := \sup_{\alpha} \left\{ \sum_{\boldsymbol{z}'' \in \boldsymbol{W}} L^{2}(\boldsymbol{z},\boldsymbol{z}'') \prod_{\boldsymbol{z}' \in \mathcal{S}_{1}(\boldsymbol{z}) \cap [\boldsymbol{z},\boldsymbol{z}'']} \left(\frac{\alpha(\boldsymbol{z}')}{L(\boldsymbol{z},\boldsymbol{z}')} \right)^{\frac{2L(\boldsymbol{z},\boldsymbol{z}')L(\boldsymbol{z}',\boldsymbol{z}'')}{L^{2}(\boldsymbol{z},\boldsymbol{z}'')} \right\} \ (\geq 0),$$

where the supremum runs over all $\alpha : S_1(z) \rightarrow [0, 1]$, with $\sum_{i=1}^{n} \alpha(z') = 1$. $z' \in S_1(z)$

For $W = \emptyset$, let $\kappa_I(z, W) := 0$.

Particular case : $m = m_0$ is the counting measure on \mathcal{X} , reversible with respect to L_0 defined by $L_0(x, y) = 1$ if and only if d(x, y) = 1. For d(z, z'') = 2, one has

$$L_0^2(z, z'') = \sum_{z' \in S_1(z) \cap [z, z'']} L_0(z, z') L_0(z', z'') = |S_1(z) \cap [z, z'']|$$

and therefore

$$\kappa(z, W) := \sup_{\alpha} \left\{ \sum_{z'' \in W} |S_1(z) \cap [z, z'']| \Big(\prod_{z' \in S_1(z) \cap [z, z'']} \alpha(z') \Big)^{\frac{2}{|S_1(z) \cap [z, z'']|}} \right\}$$

Observations :

- If $W \subset W' \subset S_2(z)$ then $\kappa(z, W) \leq \kappa(z, W') \leq \kappa(z, S_2(z))$.
- If for some $z_0'' \in S_2(z)$, $S_1(z) \cap [z, z_0''] = \{z_0'\}$, then

$$\kappa(z, \mathcal{S}_2(z)) \ge \kappa(z, \{z_0''\}) = \sup_{\alpha} \alpha(z_0')^2 = 1.$$

P-M Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

halls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice 2ⁿ The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Recall our main assumptions : reversibility,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Recall our main assumptions : reversibility, maximal degree,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Discrete entropic curvature.9

Recall our main assumptions : reversibility, maximal degree, $\inf_{x,y,d(x,y)=1} L(x,y) > 0.$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Recall our main assumptions : reversibility, maximal degree, $\inf_{x,y,d(x,y)=1} L(x, y) > 0.$

Theorem : (Rapaport-S 22')

If $\kappa_L := \sup_{z \in \mathcal{X}} \kappa_L(z, S_2(z)) < \infty$, then the T_2 -entropic curvature of (\mathcal{X}, d, m, L) is bounded from below by $-2\log(\kappa_L) \ge 2(1 - \kappa_L)$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace

model

The Transposition model Other graphs

Recall our main assumptions : reversibility, maximal degree, $\inf_{x,y,d(x,y)=1} L(x, y) > 0.$

Theorem : (Rapaport-S 22')

If $\kappa_L := \sup_{z \in \mathcal{X}} \kappa_L(z, S_2(z)) < \infty$, then the T_2 -entropic curvature of (\mathcal{X}, d, m, L) is bounded from below by $-2 \log(\kappa_L) \ge 2(1 - \kappa_L)$. Namely, the relative entropy is *C*-displacement convex with for any $t \in (0, 1)$,

$$C_t(\widehat{\pi}) \ge -2\log(\kappa_L) \iint d(x,y) (d(x,y)-1) d\widehat{\pi}(x,y).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Recall our main assumptions : reversibility, maximal degree, $\inf_{x,y,d(x,y)=1} L(x, y) > 0.$

Theorem : (Rapaport-S 22')

If $\kappa_L := \sup_{z \in \mathcal{X}} \kappa_L(z, S_2(z)) < \infty$, then the T_2 -entropic curvature of (\mathcal{X}, d, m, L) is bounded from below by $-2 \log(\kappa_L) \ge 2(1 - \kappa_L)$. Namely, the relative entropy is *C*-displacement convex with for any $t \in (0, 1)$,

$$C_t(\hat{\pi}) \ge -2\log(\kappa_L) \iint d(x,y) (d(x,y)-1) d\hat{\pi}(x,y).$$

If $\kappa_L < 1$, then the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Mye

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Recall our main assumptions : reversibility, maximal degree, $\inf_{x,y,d(x,y)=1} L(x, y) > 0.$

Theorem : (Rapaport-S 22')

If $\kappa_L := \sup_{z \in \mathcal{X}} \kappa_L(z, S_2(z)) < \infty$, then the T_2 -entropic curvature of (\mathcal{X}, d, m, L) is bounded from below by $-2 \log(\kappa_L) \ge 2(1 - \kappa_L)$. Namely, the relative entropy is *C*-displacement convex with for any $t \in (0, 1)$,

$$C_t(\widehat{\pi}) \ge -2\log(\kappa_L) \iint d(x,y) (d(x,y)-1) d\widehat{\pi}(x,y).$$

If $\kappa_L < 1$, then the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature.

A Bonnet-Myers Theorem

If the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature, then its diameter is bounded. Therefore, the assumptions imply that \mathcal{X} is finite.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Mye

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Assume that $\kappa_L < 1$. For $z \in \mathcal{X}$, let

$$C_{L}(z) := \left(\sup_{W_{+}, W_{-}} \left\{ \frac{\mathbbm{1}_{W_{+} \neq \emptyset}}{1 - \kappa_{L}(z, W_{+})} + \frac{\mathbbm{1}_{W_{-} \neq \emptyset}}{1 - \kappa_{L}(z, W_{-})} \right\} \right)^{-1},$$

where the supremum runs over all W_+ , $W_- \subset S_2(z)$,

$$[z, W_+] \cap [z, W_-] = \{z\}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs
$$C_{L}(z) := \left(\sup_{W_{+},W_{-}} \left\{ \frac{\mathbbm{1}_{W_{+}\neq\emptyset}}{1-\kappa_{L}(z,W_{+})} + \frac{\mathbbm{1}_{W_{-}\neq\emptyset}}{1-\kappa_{L}(z,W_{-})} \right\} \right)^{-1},$$

where the supremum runs over all W_+ , $W_- \subset S_2(z)$,

 $[z,W_+]\cap [z,W_-]=\{z\}.$

Let

$$c_L = \inf_{z \in \mathcal{X}} c_L(z)$$

One has $\frac{1}{2}(1-\kappa_L) \leq c_L \leq 1-\kappa_L$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

$$C_{L}(z) := \left(\sup_{W_{+},W_{-}} \left\{ \frac{\mathbbm{1}_{W_{+}\neq\emptyset}}{1-\kappa_{L}(z,W_{+})} + \frac{\mathbbm{1}_{W_{-}\neq\emptyset}}{1-\kappa_{L}(z,W_{-})} \right\} \right)^{-1},$$

where the supremum runs over all W_+ , $W_- \subset S_2(z)$,

 $[z,W_+]\cap [z,W_-]=\{z\}.$

Let

$$c_L = \inf_{z \in \mathcal{X}} c_L(z)$$

One has $\frac{1}{2}(1-\kappa_L) \leq c_L \leq 1-\kappa_L$.

Theorem

If $\kappa_L < 1$ then the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature and also positive W_1 -entropic curvature, more precisely

$$C_t(\hat{\pi}) \ge 4C_L \max\left\{W_1(\nu_0,\nu_1)^2, \iint C_2(d(x,y)) \, d\hat{\pi}(x,y)\right\},\,$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

$$C_{L}(z) := \left(\sup_{W_{+}, W_{-}} \left\{ \frac{\mathbbm{1}_{W_{+} \neq \emptyset}}{1 - \kappa_{L}(z, W_{+})} + \frac{\mathbbm{1}_{W_{-} \neq \emptyset}}{1 - \kappa_{L}(z, W_{-})} \right\} \right)^{-1},$$

where the supremum runs over all W_+ , $W_- \subset S_2(z)$,

 $[z,W_+]\cap [z,W_-]=\{z\}.$

Let

$$c_L = \inf_{z \in \mathcal{X}} c_L(z)$$

One has $\frac{1}{2}(1-\kappa_L) \leq c_L \leq 1-\kappa_L$.

Theorem

If $\kappa_L < 1$ then the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature and also positive W_1 -entropic curvature, more precisely

$$C_{t}(\hat{\pi}) \ge 4c_{L} \max\left\{W_{1}(\nu_{0},\nu_{1})^{2}, \iint c_{2}(d(x,y)) \, d\hat{\pi}(x,y)\right\},\$$

with $c_{2}(d) := \max\left\{\frac{d(d-1)}{2}, d^{2} - 2d(1 + \log d)\mathbb{1}_{d\neq 0}\right\}, \quad d \in \mathbb{N}.$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

$$C_{L}(z) := \left(\sup_{W_{+}, W_{-}} \left\{ \frac{\mathbbm{1}_{W_{+} \neq \emptyset}}{1 - \kappa_{L}(z, W_{+})} + \frac{\mathbbm{1}_{W_{-} \neq \emptyset}}{1 - \kappa_{L}(z, W_{-})} \right\} \right)^{-1},$$

where the supremum runs over all W_+ , $W_- \subset S_2(z)$,

 $[z,W_+]\cap [z,W_-]=\{z\}.$

Let

$$c_L = \inf_{z \in \mathcal{X}} c_L(z)$$

One has $\frac{1}{2}(1-\kappa_L) \leq c_L \leq 1-\kappa_L$.

Theorem

If $\kappa_L < 1$ then the space (\mathcal{X}, d, m, L) has positive T_2 -entropic curvature and also positive W_1 -entropic curvature, more precisely

$$C_{t}(\widehat{\pi}) \geq 4c_{L} \max\left\{W_{1}(\nu_{0},\nu_{1})^{2}, \iint c_{2}(d(x,y)) \, d\widehat{\pi}(x,y)\right\},$$
with $c_{2}(d) := \max\left\{\frac{d(d-1)}{2}, d^{2} - 2d(1 + \log d)\mathbb{1}_{d\neq 0}\right\}, \quad d \in \mathbb{N}.$
We also have
$$C_{t}(\widehat{\pi}) \geq (1 - \kappa_{L})\widetilde{T}_{2}(\widehat{\pi}).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers

Bonnet-Myers Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$$\left(\int e^{t} dm\right)^{1-t} \left(\int e^{g} dm\right)^{t} \leqslant \int e^{h} dm.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} \, t(1-t) \, c_2(d(x,y)),$$

then

$$\left(\int e^{t}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm$$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice Zⁿ The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2}\inf_{\pi\in\Pi(\nu_0,\nu_1)}\mathsf{C}(\pi)\leqslant \left(\sqrt{\mathsf{H}(\nu_0|\mu)}+\sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2}\inf_{\pi\in\Pi(\nu_0,\nu_1)}\mathsf{C}(\pi)\leqslant \left(\sqrt{\mathsf{H}(\nu_0|\mu)}+\sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

Proof :

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy

Sobolev Inequality

Examples of graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2} \inf_{\pi \in \Pi(\nu_0,\nu_1)} \mathsf{C}(\pi) \leq \left(\sqrt{\mathsf{H}(\nu_0|\mu)} + \sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

Proof: Since $H(\nu|\mu) = H(\nu|m) + \log(m(\mathcal{X}))$, the relative entropy $\nu \in \mathcal{P}(\mathcal{X}) \rightarrow H(\nu|\mu)$ is also *C*-displacement convex,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2} \inf_{\pi \in \Pi(\nu_0,\nu_1)} \mathsf{C}(\pi) \leq \left(\sqrt{\mathsf{H}(\nu_0|\mu)} + \sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

Proof: Since $H(\nu|\mu) = H(\nu|m) + \log(m(\mathcal{X}))$, the relative entropy $\nu \in \mathcal{P}(\mathcal{X}) \rightarrow H(\nu|\mu)$ is also *C*-displacement convex,for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$H(\widehat{Q}_t|\mu) \leq (1-t)H(\nu_0|\mu) + tH(\nu_1|\mu) - \frac{t(1-t)}{2} \mathcal{K} C(\widehat{\pi}).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy

Sobolev Inequality

Examples of graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2} \inf_{\pi \in \Pi(\nu_0,\nu_1)} \mathsf{C}(\pi) \leq \left(\sqrt{\mathsf{H}(\nu_0|\mu)} + \sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

Proof: Since $H(\nu|\mu) = H(\nu|m) + \log(m(\mathcal{X}))$, the relative entropy $\nu \in \mathcal{P}(\mathcal{X}) \rightarrow H(\nu|\mu)$ is also *C*-displacement convex,for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$H(\hat{Q}_t|\mu) \leq (1-t)H(\nu_0|\mu) + t H(\nu_1|\mu) - \frac{t(1-t)}{2} K C(\hat{\pi}).$$

By Jensen inequality, $H(\hat{Q}_t|\mu) \ge 0$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy

nanaporeantrop

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Assume that on the space (\mathcal{X}, d, m, L) , the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K_2 \iint c_2(d(x, y)) d\hat{\pi}(x, y)$. Let $t \in (0, 1)$. If f, g, h are real functions on \mathcal{X} satisfying for all $x, y \in \mathcal{X}$,

$$(1-t)f(x) + tg(y) \leq \int h \, dQ_t^{x,y} + \frac{K_2}{2} t(1-t) \, c_2(d(x,y)),$$

then

$\left(\int e^{f}dm\right)^{1-t}\left(\int e^{g}dm\right)^{t}\leqslant\int e^{h}dm.$

Corollary : Transport-entropy inequalities

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge K C(\hat{\pi}), K \ge 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following transport-entropy inequality, for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$\frac{\mathsf{K}}{2} \inf_{\pi \in \Pi(\nu_0,\nu_1)} \mathsf{C}(\pi) \leq \left(\sqrt{\mathsf{H}(\nu_0|\mu)} + \sqrt{\mathsf{H}(\nu_1|\mu)}\right)^2.$$

Proof: Since $H(\nu|\mu) = H(\nu|m) + \log(m(\mathcal{X}))$, the relative entropy $\nu \in \mathcal{P}(\mathcal{X}) \rightarrow H(\nu|\mu)$ is also *C*-displacement convex,for all $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$,

$$H(\widehat{Q}_t|\mu) \leq (1-t)H(\nu_0|\mu) + tH(\nu_1|\mu) - \frac{t(1-t)}{2} \operatorname{\mathsf{K}} C(\widehat{\pi}).$$

By Jensen inequality, $H(\hat{Q}_t|\mu) \ge 0$. Then it remains to optimize in $t \in (0, 1)$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem

Bonnet-Myers

Prékopa-Leindler Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Corollary : Modified logarithmic Sobolev inequality

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model

The Transposition model Other graphs

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Corollary : Modified logarithmic Sobolev inequality

If (\mathcal{X}, d, m, L) has positive entropic curvature and the C-displacement

convexity property of entropy holds with $C_t(\hat{\pi}) \ge \tilde{K} \tilde{T}_2(\hat{\pi}), \tilde{K} > 0$,

Theorem

Bonnet-Myers

Prékopa-Leindler

Transport-entropy

Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace

model The Transposition model

Other graphs

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Corollary : Modified logarithmic Sobolev inequality

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge \tilde{K} \tilde{T}_2(\hat{\pi}), \tilde{K} > 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following modified logarithmic-Sobolev inequality, for any non negative function $f : \mathcal{X} \to (0, +\infty)$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{2\widetilde{k}} \int \max_{x',x' \sim x} \left[\log f(x) - \log f(x') \right]_{+}^{2} f(x) \, d\mu(x),$$

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Corollary : Modified logarithmic Sobolev inequality

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge \tilde{K} \tilde{T}_2(\hat{\pi}), \tilde{K} > 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following modified logarithmic-Sobolev inequality, for any non negative function $f : \mathcal{X} \to (0, +\infty)$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{2\widetilde{\mathcal{K}}} \int \max_{x',x' \sim x} \left[\log f(x) - \log f(x') \right]_{+}^{2} f(x) \, d\mu(x),$$

where $\operatorname{Ent}_{\mu}(f) = H(\mu_f|\mu)$ with $\mu_f = \mu/\mu(f)$.

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Corollary : Modified logarithmic Sobolev inequality

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge \tilde{K} \tilde{T}_2(\hat{\pi}), \tilde{K} > 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following modified logarithmic-Sobolev inequality, for any non negative function $f : \mathcal{X} \to (0, +\infty)$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{2\widetilde{\mathcal{K}}} \int \max_{x',x' \sim x} \left[\log f(x) - \log f(x') \right]_{+}^{2} f(x) \, d\mu(x),$$

where $\operatorname{Ent}_{\mu}(f) = H(\mu_f|\mu)$ with $\mu_f = \mu/\mu(f)$.

Proof :

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

Corollary : Modified logarithmic Sobolev inequality

If (\mathcal{X}, d, m, L) has positive entropic curvature and the *C*-displacement convexity property of entropy holds with $C_t(\hat{\pi}) \ge \tilde{K} \tilde{T}_2(\hat{\pi}), \tilde{K} > 0$, then the probability measure $\mu := m/m(\mathcal{X})$ satisfies the following modified logarithmic-Sobolev inequality, for any non negative function $f : \mathcal{X} \to (0, +\infty)$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{2\widetilde{\mathcal{K}}} \int \max_{x',x' \sim x} \left[\log f(x) - \log f(x') \right]_{+}^{2} f(x) \, d\mu(x),$$

where $\operatorname{Ent}_{\mu}(f) = H(\mu_f|\mu)$ with $\mu_f = \mu/\mu(f)$.

Proof : Choose $\nu_0 = \mu_f$ and let *t* go to 0 in the *C*-displacement convexity property.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

Other graphs

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0 $(\widehat{Q}_t)_{t \in [0,1]}$: the Schrödinger bridge at zero temperature joining ν_0 to ν_1 $\widehat{Q}_t(z) = \sum_{\substack{x,y \in \mathcal{X} \\ y,y \in \mathcal{X}}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$ where for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ $Q_t^{x,y}(z) = \begin{pmatrix} |y_1 - x_1| \\ |z_1 - x_1| \end{pmatrix} \cdots \begin{pmatrix} |y_n - x_n| \\ |z_n - x_n| \end{pmatrix} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z).$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

Other graphs

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0 $(\widehat{Q}_t)_{t \in [0,1]}$: the Schrödinger bridge at zero temperature joining ν_0 to ν_1 $\widehat{Q}_t(z) = \sum_{\substack{x,y \in \mathcal{X} \\ y \in \mathcal{X}}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$ where for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ $Q_t^{x,y}(z) = {|y_1 - x_1| | \dots | |y_n - x_n| | |z_n - x_n|} t^{d(x,z)}(1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z).$

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0 $(\widehat{Q}_t)_{t \in [0,1]}$: the Schrödinger bridge at zero temperature joining ν_0 to ν_1 $\widehat{Q}_t(z) = \sum_{\substack{x,y \in \mathcal{X} \\ y,y \in \mathcal{X}}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$ where for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ $Q_t^{x,y}(z) = \begin{pmatrix} |y_1 - x_1| \\ |z_1 - x_1| \end{pmatrix} \cdots \begin{pmatrix} |y_n - x_n| \\ |z_n - x_n| \end{pmatrix} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z).$

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

cobolov moquality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0 $(\widehat{Q}_t)_{t \in [0,1]}$: the Schrödinger bridge at zero temperature joining ν_0 to ν_1 $\widehat{Q}_t(z) = \sum_{\substack{x,y \in \mathcal{X} \\ y,y \in \mathcal{X}}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$ where for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ $Q_t^{x,y}(z) = \begin{pmatrix} |y_1 - x_1| \\ |z_1 - x_1| \end{pmatrix} \cdots \begin{pmatrix} |y_n - x_n| \\ |z_n - x_n| \end{pmatrix} t^{d(x,z)}(1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z).$

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

Another Prékopa-Leindler inequality on \mathbb{Z} for t = 1/2,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model

- The lattice $\mathbb{Z}^n = \mathcal{X}$ with counting measure m_0 $(\widehat{Q}_t)_{t \in [0,1]}$: the Schrödinger bridge at zero temperature joining ν_0 to ν_1 $\widehat{Q}_t(z) = \sum_{\substack{x,y \in \mathcal{X} \\ y,y \in \mathcal{X}}} Q_t^{x,y}(z) \,\widehat{\pi}(x,y),$ where for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ $Q_t^{x,y}(z) = \begin{pmatrix} |y_1 - x_1| \\ |z_1 - x_1| \end{pmatrix} \cdots \begin{pmatrix} |y_n - x_n| \\ |z_n - x_n| \end{pmatrix} t^{d(x,z)}(1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z).$

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

Another Prékopa-Leindler inequality on \mathbb{Z} for t = 1/2,

Theorem : Klartag-Lehec (19')

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

Another Prékopa-Leindler inequality on \mathbb{Z} for t = 1/2,

Theorem : Klartag-Lehec (19')

 $m_{-}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, m_{+}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, x, y \in \mathbb{Z}.$ For any functions f, g, h, k on \mathbb{Z} satisfying

 $f(x) + g(y) \leq h(m_{-}(x,y)) + k(m_{+}(x,y)), \quad \forall x, y \in \mathbb{Z}.$

one has

$$\left(\int_{\mathbb{Z}} e^{f} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{g} dm_{0}\right) \leqslant \left(\int_{\mathbb{Z}} e^{k} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{h} dm_{0}\right).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

Another Prékopa-Leindler inequality on \mathbb{Z} for t = 1/2,

Theorem : Klartag-Lehec (19')

 $m_{-}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, m_{+}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, x, y \in \mathbb{Z}.$ For any functions f, g, h, k on \mathbb{Z} satisfying

 $f(x) + g(y) \leq h(m_{-}(x,y)) + k(m_{+}(x,y)), \quad \forall x, y \in \mathbb{Z}.$

one has

$$\left(\int_{\mathbb{Z}} e^{f} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{g} dm_{0}\right) \leq \left(\int_{\mathbb{Z}} e^{k} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{h} dm_{0}\right).$$

Also consequence of a "convex entropy inequality" :

Theorem : Gozlan-Roberto-S.-Tetali (20'). Halikias-Klartag-Slomka (21'), Slomka (21') $H(\nu_{-}|m_{0}) + H(\nu_{+}|m_{0}) \leqslant H(\nu_{0}|m_{0}) + H(\nu_{1}|m_{0}),$ where $\nu_{-} = m_{-\#}\hat{\pi}, \quad \nu_{+} = m_{+\#}\hat{\pi}, \quad \hat{\pi}$ monotone coupling of ν_{0} and ν_{1} .

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

For all $z \in \mathbb{Z}^n$, $\kappa(z, S_2(z)) = 1 \Rightarrow K_2 \ge 0$.

Bonney-Myers Theorem implies $K_2 = 0$, a result by E. Hillion (14').

Another Prékopa-Leindler inequality on \mathbb{Z} for t = 1/2,

Theorem : Klartag-Lehec (19')

 $m_{-}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, m_{+}(x,y) = \left\lfloor \frac{x+y}{2} \right\rfloor, x, y \in \mathbb{Z}.$ For any functions f, g, h, k on \mathbb{Z} satisfying

 $f(x) + g(y) \leq h(m_{-}(x,y)) + k(m_{+}(x,y)), \quad \forall x, y \in \mathbb{Z}.$

one has

$$\left(\int_{\mathbb{Z}} e^{f} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{g} dm_{0}\right) \leq \left(\int_{\mathbb{Z}} e^{k} dm_{0}\right) \left(\int_{\mathbb{Z}} e^{h} dm_{0}\right).$$

Also consequence of a "convex entropy inequality" :

Theorem : Gozlan-Roberto-S.-Tetali (20'). Halikias-Klartag-Slomka (21'), Slomka (21') $H(\nu_{-}|m_{0}) + H(\nu_{+}|m_{0}) \leqslant H(\nu_{0}|m_{0}) + H(\nu_{1}|m_{0}),$ where $\nu_{-} = m_{-\#}\hat{\pi}, \quad \nu_{+} = m_{+\#}\hat{\pi}, \quad \hat{\pi}$ monotone coupling of ν_{0} and ν_{1} .

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model The Transposition model Other graphs

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

Other graphs

 m_0 : the counting measure on $\{0, 1\}^n$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

 m_0 : the counting measure on $\{0, 1\}^n$.

d : the graph distance
$$d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \quad x, y \in \{0, 1\}^n$$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\hat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

 m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x, y) = \sum_{i=1}^{n} \mathbbm{1}_{x_i \neq y_i}, \qquad x, y \in \{0, 1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of z according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \ldots, z_{i-1}, \overline{z}_i, z_{i+1}, \ldots, z_n),$

where $\overline{z_i} := 1 - z_i$.

Results :

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

 m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \qquad x, y \in \{0,1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of *z* according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \dots, z_{i-1}, \overline{z}_i, z_{i+1}, \dots, z_n),$ where $\overline{z_i} := 1 - z_i$.

Results : For any $z \in \{0, 1\}^n$,

$$\kappa(z, S_2(z)) = \sup_{\alpha} \sum_{\{i,j\} \subset [n]} 2\alpha(\sigma_i(z))\alpha(\sigma_j(z)) = \sup_{\alpha} \sum_{\{i,j\} \subset [n]} 2\alpha_i \alpha_j = 1 - 1/n,$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model Other graphs
m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \qquad x, y \in \{0,1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of z according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \dots, z_{i-1}, \overline{z}_i, z_{i+1}, \dots, z_n),$ where $\overline{z_i} := 1 - z_i$. Results : For any $z \in \{0, 1\}^n$,

$$\kappa(z, S_2(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha(\sigma_i(z))\alpha(\sigma_j(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha_i\alpha_j = 1 - 1/n,$$

and $c_{L_0}(z) = 1/n$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

 m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \qquad x, y \in \{0,1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)}(1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of z according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \ldots, z_{i-1}, \overline{z}_i, z_{i+1}, \ldots, z_n),$

where $\overline{z_i} := 1 - z_i$.

Results : For any $z \in \{0, 1\}^n$,

$$\kappa(z, S_2(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha(\sigma_i(z))\alpha(\sigma_j(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha_i\alpha_j = 1 - 1/n,$$

and $c_{L_0}(z) = 1/n \Rightarrow K_1 \ge 4/n$, $K_2 \ge 4/n$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

 m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \qquad x, y \in \{0,1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of z according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \dots, z_{i-1}, \overline{z}_i, z_{i+1}, \dots, z_n),$ where $\overline{z_i} := 1 - z_i$.

Results : For any $z \in \{0, 1\}^n$,

 $1030103 \cdot 101010102 \in \{0, 1\}$

$$\kappa(z, S_2(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha(\sigma_i(z))\alpha(\sigma_j(z)) = \sup_{\alpha} \sum_{\{i,j\}\subset [n]} 2\alpha_i\alpha_j = 1 - 1/n,$$

and $c_{L_0}(z) = 1/n \Rightarrow K_1 \ge 4/n$, $K_2 \ge 4/n$. As a consequence, if $\mu_0 = m_0/m_0(\mathcal{X})$ then

$$\frac{2}{n} \inf_{\pi \in \Pi(\nu_0, \nu_1)} \iint c_2(d(x, y)) \, d\pi(x, y) \leq \left(\sqrt{H(\nu_0|\mu_0)} + \sqrt{H(\nu_1|\mu_0)}\right)^2,$$

with $c_2(d) \underset{+\infty}{\longrightarrow} d^2.$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

 m_0 : the counting measure on $\{0, 1\}^n$.

$$d$$
: the graph distance $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}, \qquad x, y \in \{0,1\}^n.$

The Schrödinger bridge at zero temperature on the space $(\mathcal{X}, d, m_0, L_0)$

$$\widehat{Q}_t^{x,y}(z) = t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \{0,1\}^n$$

 $\sigma_i(z)$: the neighbour of z according to the *i*'s coordinate,

 $\sigma_i(z) := (z_1, \dots, z_{i-1}, \overline{z}_i, z_{i+1}, \dots, z_n),$ where $\overline{z_i} := 1 - z_i$.

Results : For any $z \in \{0, 1\}^n$,

$$\kappa(z, S_2(z)) = \sup_{\alpha} \sum_{\{i,j\} \subset [n]} 2\alpha(\sigma_i(z))\alpha(\sigma_j(z)) = \sup_{\alpha} \sum_{\{i,j\} \subset [n]} 2\alpha_i \alpha_j = 1 - 1/n,$$

and $c_{L_0}(z) = 1/n \Rightarrow K_1 \ge 4/n$, $K_2 \ge 4/n$. As a consequence, if $\mu_0 = m_0/m_0(\mathcal{X})$ then

$$\frac{2}{n}\inf_{\pi\in\Pi(\nu_0,\nu_1)}\iint \mathcal{O}_2(\mathbf{d}(\mathbf{x},\mathbf{y}))\,\mathbf{d}\pi(\mathbf{x},\mathbf{y})\leqslant \left(\sqrt{H(\nu_0|\mu_0)}+\sqrt{H(\nu_1|\mu_0)}\right)^2,$$

with $c_2(d) \underset{+\infty}{\sim} d^2$. Using the CLT, implies Talagrand's inequality for the standard Gaussian measure, γ_o : for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathbb{R})$

$$\frac{1}{2}W_2^2(\nu_0,\nu_1) \leqslant \left(\sqrt{H(\nu_0|\boldsymbol{\gamma_0})} + \sqrt{H(\nu_1|\boldsymbol{\gamma_0})}\right)^2.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

 $\mu_V = e^{-V}m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\widehat{Q}_t|\mu_V) := H(\widehat{Q}_t|m_0) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int V \, d\widehat{Q}_t.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\hat{Q}_t|\boldsymbol{\mu_V}) := H(\hat{Q}_t|\boldsymbol{m_0}) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int V \, d\hat{Q}_t.$$

~

 φ'' can be computed explicitly : $\varphi''(t) = \iint (\varphi^{x,y})''(t) d\hat{\pi}(x,y)$, with $(\varphi^{x,y})''(t) :=$

$$d(x,y)(d(x,y)-1)\sum_{(z,z'')\in[x,y],d(z,z'')=2}\Delta V(z,z'')\frac{L_0^{d(x,z)}(x,z)L_0^2(z,z'')L_0^{d(z'',y)}(z'',y)}{L_0^{d(x,y)}(x,y)},$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

.....

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\hat{Q}_t|\boldsymbol{\mu_V}) := H(\hat{Q}_t|\boldsymbol{m_0}) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int V \, d\hat{Q}_t.$$

~

 φ'' can be computed explicitly : $\varphi''(t) = \iint (\varphi^{x,y})''(t) d\hat{\pi}(x,y)$, with $(\varphi^{x,y})''(t) :=$

$$d(x,y)(d(x,y)-1) \sum_{(z,z'')\in[x,y],d(z,z'')=2} \Delta V(z,z'') \frac{L_0^{d(x,z)}(x,z)L_0^2(z,z'')L_0^{d(z'',y)}(z'',y)}{L_0^{d(x,y)}(x,y)},$$

and
$$\Delta V(z,z'') = \sum_{z'\in[z,z'']} \left(V(z) + V(z'') - 2V(z')\right) \frac{L_0(z,z')L_0(z',z'')}{L_0^2(z,z'')}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice 2ⁿ

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\hat{Q}_t|\boldsymbol{\mu_V}) := H(\hat{Q}_t|\boldsymbol{m_0}) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int V \, d\hat{Q}_t.$$

~

 φ'' can be computed explicitly : $\varphi''(t) = \iint (\varphi^{x,y})''(t) d\hat{\pi}(x,y)$, with $(\varphi^{x,y})''(t) :=$

$$\begin{split} d(x,y)(d(x,y)-1) &\sum_{(z,z'')\in[x,y],d(z,z'')=2} \Delta V(z,z'') \frac{L_0^{d(x,z)}(x,z)L_0^2(z,z'')L_0^{d(z'',y)}(z'',y)}{L_0^{d(x,y)}(x,y)},\\ \text{and} & \Delta V(z,z'') = \sum_{z'\in[z,z'']} \left(V(z)+V(z'')-2V(z')\right) \frac{L_0(z,z')L_0(z',z'')}{L_0^2(z,z'')}. \end{split}$$

Example on $\{0, 1\}^n$: for $V(z) = \langle z, Az \rangle + \langle b, z \rangle + C$, where $A = (A_{ij})_{i,j}$ is $n \times n$ symmetric matrix with 0 diagonal, $b \in \mathbb{R}^n$, $C \in \mathbb{R}$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model The Transposition model

from

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\hat{Q}_t|\boldsymbol{\mu}_{\boldsymbol{V}}) := H(\hat{Q}_t|\boldsymbol{m}_0) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int \boldsymbol{V} \, d\hat{Q}_t.$$

~

 φ'' can be computed explicitly : $\varphi''(t) = \iint (\varphi^{x,y})''(t) d\hat{\pi}(x,y)$, with $(\varphi^{x,y})''(t) :=$

$$\begin{split} d(x,y)(d(x,y)-1) &\sum_{(z,z'')\in[x,y],d(z,z'')=2} \Delta V(z,z'') \frac{L_0^{d(x,z)}(x,z)L_0^2(z,z'')L_0^{d(z'',y)}(z'',y)}{L_0^{d(x,y)}(x,y)},\\ \text{and} & \Delta V(z,z'') = \sum_{z'\in[z,z'']} \left(V(z)+V(z'')-2V(z')\right) \frac{L_0(z,z')L_0(z',z'')}{L_0^2(z,z'')}. \end{split}$$

Example on $\{0, 1\}^n$: for $V(z) = \langle z, Az \rangle + \langle b, z \rangle + C$, where $A = (A_{ij})_{i,j}$ is $n \times n$ symmetric matrix with 0 diagonal, $b \in \mathbb{R}^n$, $C \in \mathbb{R}$. For any $i \neq j$, one has

$$\begin{split} \Delta V(z,\sigma_i\sigma_j(z)) &= V(\sigma_i\sigma_j(z)) + V(z) - V(\sigma_i(z)) - V(\sigma_j(z)) \\ &= 2(2z_i - 1)(2z_j - 1) A_{ij}, \\ \text{which we get } \varphi''(t) &\geq 2\lambda_{\min}(A) \iint d(x,y) \, d\widehat{\pi}(x,y), \, \text{with } \lambda_{\min}(A) \leqslant 0. \end{split}$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

 $\mu_V = e^{-V} m_0$: a probability density with potential interaction $V : \{0, 1\}^n \to \mathbb{R}$. One has

$$H(\hat{Q}_t|\boldsymbol{\mu}_{\boldsymbol{V}}) := H(\hat{Q}_t|\boldsymbol{m}_0) + \varphi(t), \quad \text{with} \quad \varphi(t) = \int \boldsymbol{V} \, d\hat{Q}_t.$$

~

 φ'' can be computed explicitly : $\varphi''(t) = \iint (\varphi^{x,y})''(t) d\hat{\pi}(x,y)$, with $(\varphi^{x,y})''(t) :=$

$$\begin{split} d(x,y)(d(x,y)-1) &\sum_{(z,z'')\in[x,y],d(z,z'')=2} \Delta V(z,z'') \frac{L_0^{d(x,z)}(x,z)L_0^2(z,z'')L_0^{d(z'',y)}(z'',y)}{L_0^{d(x,y)}(x,y)},\\ \text{and} & \Delta V(z,z'') = \sum_{z'\in[z,z'']} \left(V(z)+V(z'')-2V(z')\right) \frac{L_0(z,z')L_0(z',z'')}{L_0^2(z,z'')}. \end{split}$$

Example on $\{0, 1\}^n$: for $V(z) = \langle z, Az \rangle + \langle b, z \rangle + C$, where $A = (A_{ij})_{i,j}$ is $n \times n$ symmetric matrix with 0 diagonal, $b \in \mathbb{R}^n$, $C \in \mathbb{R}$. For any $i \neq j$, one has

$$\begin{aligned} \Delta V(z,\sigma_i\sigma_j(z)) &= V(\sigma_i\sigma_j(z)) + V(z) - V(\sigma_i(z)) - V(\sigma_j(z)) \\ &= 2(2z_i - 1)(2z_j - 1) A_{ij}, \end{aligned}$$

from which we get $\varphi''(t) \ge 2\lambda_{\min}(A) \iint d(x, y) d\hat{\pi}(x, y)$, with $\lambda_{\min}(A) \le 0$. It follows that $H(\cdot|\mu_V)$ satisfies the *C*-displacement convexity property with

$$C_t(\hat{\pi}) \geq \frac{2}{n} \iint d(x,y)(d(x,y)-1)d\hat{\pi}(x,y) + 2\lambda_{\min}(A) \iint d(x,y) d\hat{\pi}(x,y).$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace

model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace

model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] \mid z_i = 0\}$, $l_1(z) := \{i \in [n] \mid z_i = 1\}$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace

model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \ldots, x_n) \in \{0, 1\} \mid x_1 + \ldots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] \mid z_i = 0\}$, $l_1(z) := \{i \in [n] \mid z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {d(x,y) \choose d(x,z)}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

Results :

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {d(x,y) \choose d(x,z)}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

Results : For any $z \in \{0, 1\}^n$, $\kappa(z, S_2(z)) = 1 - \frac{1}{\min(k, n-k)}$,

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

Results : For any $z \in \{0, 1\}^n$, $\kappa(z, S_2(z)) = 1 - \frac{1}{\min(k, n-k)}$, and $c_{L_0}(z) = \frac{1}{\min(k, n-k)}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {d(x,y) \choose d(x,z)}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \end{array}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \end{array}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

Results : For any $z \in \{0, 1\}^n$, $\kappa(z, S_2(z)) = 1 - \frac{1}{\min(k, n-k)}$, and $c_{L_0}(z) = \frac{1}{\min(k, n-k)} \Rightarrow K_1 \ge \frac{4}{\min(k, n-k)}$, $K_2 \ge \frac{4}{\min(k, n-k)}$. Comparison : Erbar-Maas entropic curvature : $\frac{n+2}{k(n-k)}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube

The Bernoulli-Laplace

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k\}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \, | \, x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

Two permutations x and y of the set [n] are neighbours if xy^{-1} is a transposition.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice Zⁿ The discrete cube The Bernoulli-Laplace

model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \, | \, x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

Two permutations x and y of the set [n] are neighbours if xy^{-1} is a transposition. $c_{L_0}(z) = \frac{2}{n(n-1)}$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice Zⁿ The discrete cube The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

Two permutations x and y of the set [n] are neighbours if xy^{-1} is a transposition. $c_{L_0}(z) = \frac{2}{n(n-1)} \Rightarrow K_1 \ge \frac{8}{n(n-1)}, K_2 \ge \frac{8}{n(n-1)}.$

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice Zⁿ The discrete cube The Bernoulli-Laplace

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

Two permutations *x* and *y* of the set [*n*] are neighbours if xy^{-1} is a transposition. $c_{L_0}(z) = \frac{2}{n(n-1)} \Rightarrow K_1 \ge \frac{8}{n(n-1)}, K_2 \ge \frac{8}{n(n-1)}$. Comparison : Erbar-Maas entropic curvature : the same lower bound.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model

The Transposition model

 m_0 is the counting measure on a slice of the discrete cube $\{0, 1\}^n$ of order $k \in [n]$:

$$\mathcal{X} = \mathcal{X}_k := \{ x = (x_1, \dots, x_n) \in \{0, 1\} \mid x_1 + \dots + x_n = k \}.$$

For $z \in \mathcal{X}_k$, $l_0(z) := \{i \in [n] | z_i = 0\}$, $l_1(z) := \{i \in [n] | z_i = 1\}$. For $i \in l_0(z)$, $j \in l_1(z)$, $\sigma_{ij}(z)$ a neighbour of z obtained exchanging z_i and z_j . The graph distance is given by $d(x, y) := \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$, $x, y \in \mathcal{X}_k$. The Schrödinger bridge at zero temperature is given by

$$Q_t^{x,y}(z) = {\binom{d(x,y)}{d(x,z)}}^{-1} t^{d(x,z)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z), \qquad z \in \mathcal{X}_k.$$

 $\begin{array}{ll} \text{Results}: \text{For any } z \in \{0,1\}^n, \quad \kappa(z,S_2(z)) = 1 - \frac{1}{\min(k,n-k)}, \\ \text{and} \quad c_{L_0}(z) = \frac{1}{\min(k,n-k)} \quad \Rightarrow \quad K_1 \geqslant \frac{4}{\min(k,n-k)}, \quad K_2 \geqslant \frac{4}{\min(k,n-k)}. \\ \text{Comparison}: \text{Erbar-Maas entropic curvature}: \frac{n+2}{k(n-k)} \leqslant \frac{4}{\min(k,n-k)}, \text{ equality for } (k,n) = (1,2). \end{array}$

- The transposition model : m_0 is the counting measure on the symmetric group $S_n = \mathcal{X}, n \ge 2$.

Two permutations *x* and *y* of the set [*n*] are neighbours if xy^{-1} is a transposition. $c_{L_0}(z) = \frac{2}{n(n-1)} \implies K_1 \ge \frac{8}{n(n-1)}, \quad K_2 \ge \frac{8}{n(n-1)}.$ Comparison : Erbar-Maas entropic curvature : the same lower bound. A lower bound of order *Cste/n* could be expected, du to known W_1 -transport entropy inequality and modified Logarithmic Sobolev inequality for $\mu_0 = m_0/m_0(S_n)$.

P-M. Samson

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model

The Transposition model

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

- The multinomial distribution μ on the set

$$\mathcal{X} := \{ (x_1, \dots, x_d), x_i \in \mathbb{N}, \sum_{i=1}^d x_i = N \}, \qquad \mu(x) := \frac{N!}{d^N \prod_{i=1}^d x_i!}, \quad x \in \mathcal{X}.$$
$$\mathcal{K}_1 \ge \frac{2}{N}, \quad \mathcal{K}_2 \ge \frac{2}{N}.$$

Discrete entropic curvature.17

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

- The multinomial distribution μ on the set

$$\begin{aligned} \mathcal{X} &:= \{ (x_1, \dots, x_d), x_i \in \mathbb{N}, \sum_{i=1}^d x_i = N \}, \qquad \mu(x) := \frac{N!}{d^N \prod_{i=1}^d x_i!}, \quad x \in \mathcal{X}. \\ & \quad K_1 \ge \frac{2}{N}, \quad K_2 \ge \frac{2}{N}. \end{aligned}$$

- The complete graph, the circle, ...

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Soboley Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

- The multinomial distribution μ on the set

$$\begin{aligned} \mathcal{X} &:= \{ (x_1, \dots, x_d), x_i \in \mathbb{N}, \sum_{i=1}^d x_i = N \}, \qquad \mu(x) := \frac{N!}{d^N \prod_{i=1}^d x_i!}, \quad x \in \mathcal{X}. \\ & \quad K_1 \ge \frac{2}{N}, \quad K_2 \ge \frac{2}{N}. \end{aligned}$$

- The complete graph, the circle, ...
- One may also consider graphs with non-positive T_2 -entropic curvature :

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n The discrete cube The Bernoulli-Laplace model The Transposition model

Other graphs

- The multinomial distribution μ on the set

$$\begin{aligned} \mathcal{X} &:= \{ (x_1, \dots, x_d), x_i \in \mathbb{N}, \sum_{i=1}^d x_i = N \}, \qquad \mu(x) := \frac{N!}{d^N \prod_{i=1}^d x_i!}, \quad x \in \mathcal{X}. \\ & \quad K_1 \ge \frac{2}{N}, \quad K_2 \ge \frac{2}{N}. \end{aligned}$$

- The complete graph, the circle, ...

- One may also consider graphs with non-positive T_2 -entropic curvature : The so-called geodetic graphs (only one discrete geodesic between two vertices) like the trees :

 $-2\log\left(1+[\max_{z\in\mathcal{X}}\operatorname{Deg}(z)-2]_+\right)\leqslant K_2\leqslant 0.$

Discrete entropic curvature.17

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

Open questions - work in progress :

- Find new connections between curvature along *W*₁-geodesics and modified logarithmic Sobolev inequalities for Cayley graphs.
- Consider measures on graphs with potential interactions.
- Find connections between entropic curvature and Ollivier or Lin-Lu-Yau definition of Ricci curvature on graphs.

Introduction

Entropic curvature The slowing down procedure The discrete setting Structure of the bridges

Definition of curvature

Geometric condition on balls

Main results

Theorem Bonnet-Myers Prékopa-Leindler Transport-entropy Sobolev Inequality

Examples of graphs

The lattice \mathbb{Z}^n

The discrete cube

The Bernoulli-Laplace model

The Transposition model

Other graphs

Open questions - work in progress :

- Find new connections between curvature along W₁-geodesics and modified logarithmic Sobolev inequalities for Cayley graphs.
- Consider measures on graphs with potential interactions.
- Find connections between entropic curvature and Ollivier or Lin-Lu-Yau definition of Ricci curvature on graphs.

Thank you.