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Renormalization groups



The big picture

• Physical systems have an enormously large number of degrees

of freedom.

• When the number of degrees of freedom per correlation length

is small (e.g., ideal gas), perturbation methods provide

accurate predictions.

• When the number of degrees of freedom per correlation length

is large (e.g., Ising model at critical temperature, quantum

field theories), perturbation methods break down.

• Renormalization groups tackle this problem by reducing the

number of degrees of freedom so that the number of

“effective” degrees of freedom per correlation length is small.

• The process of elimination of the degrees of freedom is

gradual: going from one step to the next, only a few degrees

of freedom need to be considered which simplifies the analysis.
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Renormalization groups help us understand:

• Statistical field theories: universality, critical exponents, phase

diagrams...

• Quantum field theories: Behavior at infrared and ultraviolet

limits, asymptotic freedom (quantum chromodynamics),

asymptotic safety (quantum gravity)....
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Very brief history of renormalization groups

• 1940s: Perturbation theory in quantum electrodynamics gives

infinities. Beth, Feynman, Schwinger, and Dyson renormalize

parameters (mass, coupling constants, etc.) to tame infinities

while keeping the physics invariant.

• 1950s: Renormalization procedure (still in a perturbative

form) can be viewed as a group of infinitesimal

transformations which can be described by differential

equations (Stueckelberg & Petermann, Gell-Mann & Low,

Bogoluibov & Shirkov).

• 1970s: Wilson developed (in the context of statistical field

theories) exact (non-perturbative) renormalization

(semi)groups.

• 1980s: We will use a version of an exact renormalization

(semi)group due to Polchinski.
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Quantum and statistical and field theories

• Formal probability measures on field configurations (e.g.,

generalized function spaces).

• Lattice theories: Field configurations (ϕx)x∈Λε,L where

Λε,L = LTd ∩ εZd .

• Free field: Gaussian measure γε,L on RΛε,L with covariance

Aε := ε−d(−∆ε + m)−1 where m is the mass and ∆ε is the

discrete Laplacian.

• Interacting field: A measure νε,L of the form

dνε,L = e−V0dγε,L.

• Continuum limits: L ↑ ∞ (infrared—long distance scale) and

ε ↓ 0 (ultraviolet—short distance scale).
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Kadanoff’s block spin picture

ϕ̃ϕ

Partition function = Z =
∑
ϕ

e−V0(ϕ)dγε,L(ϕ) =
∑
ϕ̃

e−Ṽ0(ϕ̃)d γ̃ε,L(ϕ̃)

e−Ṽ0(ϕ̃) =
∑
ϕ

1{ϕ ∈ block ϕ̃} e
−V0(ϕ)

Intuition (wrong): Ṽ0(ϕ̃) is of the same form as V0(ϕ) with

different coupling constants.



Wilson’s renormalization group (à la Polchinski)

Block transformation on finite couplings with sharp cutoff:

e−Ṽ0(ϕ̃) =
∑
ϕ

1{ϕ ∈ block ϕ̃} e
−V0(ϕ).

Infinitesimal transformation on infinite couplings with soft cutoff:

e−Vt(ϕ) =

∫
ζ
e−V0(ζ)dγCt (ζ − ϕ) = ECt [e

−V0(ϕ+ζ)].
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The Langevin transport map



Langevin dynamics

Let (Φt)t≥0 be the Langevin dynamics:

dΦt = ∇ log

(
dµ

dϕ

)
(Φt)dt +

√
2dBt , Φ0 ∼ νε,L,

with (Bt)t≥0 a Brownian motion in RΛε,L .

Let (Ut) be the Langevin semigroup: Utη(ϕ) = E[η(Φt)|Φ0 = ϕ].

Let ρt := Law(Φt) = Ut

(
dνε,L
dµ

)
dµ so the path of measures

(ρt)t≥0 interpolates between ρ0 = νε,L to ρ∞ = µ.
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The continuity equation

The Langevin path (ρt)t≥0 satisfies the continuity equation

∂tρt +∇(∇utρt) = 0,

where

∇ut(ϕ) = −∇ log

(
dρt
dµ

)
(ϕ) = −∇ logUt

(
dνε,L

dµ

)
(ϕ),

because ∂tUtη = ∆Utη +
(
∇Utη,∇ log

(
dµ
dϕ

))
.
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The Langevin transport map

Define the family of diffeomorphisms St : RΛε,L → RΛε,L by

∂tS t(ϕ) = ∇ut(S t(ϕ)), S0(ϕ) = ϕ.

S t transports νε,L = ρ0 to ρt and T t := S−1
t transports ρt to

ρ0 = νε,L. The Langevin transport map is

T LVN := lim
t→∞

T t transports µ = ρ∞ to ρ0 = νε,L.
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The Langevin transport map—background

• In the context of functional inequalities, the construction of

T LVN goes back to at least Otto & Villani.

• Kim & Milman were the first to show that T LVN enjoys

Lipschitz properties.

• Further Lipschitz properties of T LVN were proven by Klartag

& Putterman, Mikulincer & S., and Neeman.

• Tanana showed that, in general, T LVN is different than the

optimal transport map.
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Transport of functional inequalities

Suppose µ satisfies a Poincaré inequality with constant Cµ:

Varµ(F ) ≤ CµEµ
[
|∇F |2

]
for all test-function F : RΛε,L → R.

Suppose there exist an L-Lipschitz map T : RΛε,L → RΛε,L which

transports µ to νε,L.

Then, νε,L satisfies a Poincaré inequality with constant L2Cµ:

Var
νε,L

[F ] = Varµ(F ◦ T ) ≤ CµEµ
[
|∇(F ◦ T )|2

]
≤ CµEµ

[
|DT |2|∇F (T )|2

]
≤ L2CµEµ

[
|∇F (T )|2

]
= L2CµEνε,L

[
|∇F |2

]
.

The transport method is very general and allows the transfer of

numerous functional inequalities.
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Exact renormalization

groups and transportation

of measures



The Polchinski equation

Recall: dνε,L = e−V0dγε,L. Let (Ċt)0≤t≤τ be a family of positive

semidefinite matrices such that Cτ = A−1
ε where Ct :=

∫ t
0 Ċsds.

Evolve the potential V0 via

e−Vt(ϕ) = ECt [e
−V0(ϕ+ζ)],

which satisfies the Polchinski equation

∂tVt =
1

2
∆Ċt

Vt −
1

2
(∇Vt)

2
Ċt
.

We choose Ċt = e−t
Aε
2 and τ =∞.
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Ċt
.

We choose Ċt = e−t
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Ċt
.

We choose Ċt = e−t
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The multiscale Bakry-Émery criterion

Definition. A model νε,L satisfies the multiscale Bakry-Émery

criterion if the exist real number λ̇t (possibly negative) such that,

for any t ≥ 0 and ϕ ∈ RΛε,L ,

e−t
Aε
2 ∇2Vt(ϕ)e−t

Aε
2 � λ̇t Id .

This criterion (and versions thereof) was used by Bauerschmidt &

Bodineau and Bauerschmidt & Dagallier to prove Poincaré and

log-Sobolev inequalities for various field theories νε,L. The proofs

follow the Bakry-Émery theory but using the Polchinski

semigroup rather than the Langevin semigroup.
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Definition. A model νε,L satisfies the multiscale Bakry-Émery
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New perspective on Polchinski’s exact renormalization group

Theorem [S.] Suppose a smooth1 model νε,L satisfies the

multiscale Bakry-Émery criterion. Then, the Langevin transport

map T LVN, which pushes forward γε,L to νε,L, is

exp
(

1
2

∫∞
0 λ̇tds

)
-Lipschitz.

Remark 1. The use of the Polchinski semigroup does not allow a

transport approach. In contrast, we rescale and work with the

Langevin semigroup which induces a transport map.

Remark 2. Our new perspective on exact renormalization groups

views them as transporting the free field theories (Gaussian) γε,L

to interacting field theories νε,L in non-perturbative way. When the

transport maps are Lipschitz, the interacting field theories νε,L can

be controlled.

1The smoothness assumption on νε,L can often be removed.
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The (two-dimensional massive) sine-Gordon model

V0(ϕ) ∝ −ε2
∑
xΛε,L

2zε−β/4π cos
(√

βϕx

)

By a result of Bauerschmidt & Bodineau, the multiscale

Bakry-Émery criterion for the model holds with a constant which is

independent of ε, and in certain parameter regimes, of L.

Applying the Theorem yields many functional inequalities which

previously were not known.
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Proof: The Ornstein-Uhlenbeck transport map

We choose µ = γε,L in the Langevin transport map. Computation

shows that

∇2ut(ϕ) = −e−t
Aε
2 ∇2Vt(ϕ)e−t

Aε
2 .

Hence, if νε,L satisfies the multiscale Bakry-Émery criterion, then

−∇2ut(ϕ) � λ̇t Id .

Using

∂t∇St(ϕ) = −∇2ut(ϕ)∇St(ϕ),

completes the proof.
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The Brownian-Polchinski

transport map



The Polchinski semigroup

Take general τ and (Ċt) such that Cτ = A−1
ε where Ct :=

∫ t
0 Ċsds.

Let

dΦ̃t = −Ċτ−t∇Vτ−t(Φ̃t)dt + Ċ
1/2
τ−tdBt , t ∈ [0, τ ].

The Polchinski semigroup (Ps,t)0≤s≤t is a time-inhomogeneous

semigroup given by

Ps,tF (ϕ) := E[F (Ψs)|Ψt = ϕ],

where Ψt := Φ̃τ−t .
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The Brownian-Polchinski transport map (sketch)

• The process (Ψt) is obtained by taking the martingale(∫ t
0 Ċ

1/2
r dBr

)
t
, which satisfies

∫ τ
0 Ċ

1/2
r dBr ∼ γε,L, and

conditioning it so that at time τ is distributed like νε,L.

• When τ = 1 and Ċr = Id for all r , Mikulincer & S.

constructed the Brownian transport map based on the

process (Ψt). Using, implicitly, a multiscale Bakry-Émery

criterion, we showed that the Brownian transport map

satisfies Lipschitz properties.
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Future work

• Get a better understanding of the connection between

renormalization groups and transportation of measures.

• Develop the Brownian-Polchinski transport map approach and

incorporate the multiscale Bakry-Émery criteria.
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